ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:174KB ,
资源ID:153689      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-153689-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年秋新课堂高中数学人教A版选修2-2教师用书:第3章 阶段复习课 第3课 数系的扩充与复数的引入 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年秋新课堂高中数学人教A版选修2-2教师用书:第3章 阶段复习课 第3课 数系的扩充与复数的引入 WORD版含答案.doc

1、第三课数系的扩充与复数的引入 核心速填1复数的有关概念及分类(1)代数形式为zabi(a,bR),其中实部为a,虚部为b;(2)共轭复数为zabi(a,bR)(3)复数的分类若 zabi(a,bR)是实数,则z与的关系为z.若zabi(a,bR)是纯虚数,则z与的关系为z0(z0)2与复数运算有关的问题(1)复数相等的充要条件abicdi(a,b,c,dR)(2)复数的模复数zabi的模|z|,且z|z|2a2b2.(3)复数的四则运算,若两个复数z1a1b1i,z2a2b2i(a1,b1,a2,b2R)加法:z1z2(a1a2)(b1b2)i;减法:z1z2(a1a2)(b1b2)i;乘法:

2、z1z2(a1a2b1b2)(a1b2a2b1)i;除法:i(z20);3复数的几何意义(1)任何一个复数zabi一一对应着复平面内一个点Z(a,b),也一一对应着一个从原点出发的向量.(2)复数加法的几何意义若复数z1、z2对应的向量1、2不共线,则复数z1z2是以1、2为两邻边的平行四边形的对角线所对应的复数(3)复数减法的几何意义复数z1z2是连接向量1、2的终点,并指向Z1的向量所对应的复数体系构建题型探究复数的概念当实数a为何值时,za22a(a23a2)i.(1)为实数;(2)为纯虚数;(3)对应的点在第一象限内;(4)复数z对应的点在直线xy0. 【导学号:31062230】解(

3、1)zRa23a20,解得a1或a2.(2)z为纯虚数,即故a0.(3)z对应的点在第一象限,则a0,或a2.a的取值范围是(,0)(2,)(4)依题设(a22a)(a23a2)0,a2.规律方法处理复数概念问题的两个注意点(1)当复数不是abi(a,bR)的形式时,要通过变形化为abi的形式,以便确定其实部和虚部.(2)求解时,要注意实部和虚部本身对变量的要求,否则容易产生增根.跟踪训练1(1)若复数z1i(i为虚数单位),是z的共轭复数,则z22的虚部为()A0B1C1 D2(2)设i是虚数单位,若复数a(aR)是纯虚数,则a的值为()A3B1C1D3(1)A(2)D(1)因为z1i,所以

4、1i,所以z22(1i)2(1i)22i(2i)0.故选A.(2)因为aaa(a3)i,由纯虚数的定义,知a30,所以a3.复数的几何意义(1)在复平面内,复数(i是虚数单位)所对应的点位于()A第一象限B第二象限C第三象限D第四象限(2)已知复数z123i,z2abi,z314i,它们在复平面上所对应的点分别为A,B,C.若2,则a_,b_. 【导学号:31062231】(1)B(2)310(1)i,复数对应的点位于第二象限(2)214i2(23i)(abi)即跟踪训练2若i为虚数单位,图31中复平面内点Z表示复数z,则表示复数的点是()图31AEBFCGDHD点Z(3,1)对应的复数为z,

5、z3i,2i,该复数对应的点的坐标是(2,1),即H点复数的四则运算(1)已知是z的共轭复数,若zi22z,则z() 【导学号:31062232】A1iB1iC1iD1i(2)已知复数z123i,z2,则等于()A43iB34iC34iD43i(1)A(2)D(1)设zabi(a,bR),则abi,代入zi22z中得,(abi)(abi)i22(abi),2(a2b2)i2a2bi,由复数相等的条件得,z1i,故选A.(2)43i.母题探究:1.(变结论)本例题(1)中已知条件不变,则_.解析由解析知z1i,所以1i.i.答案i2(变结论)本例题(2)中已知条件不变,则z1z2_.解析z1z2

6、 i.答案 i规律方法(1)复数的乘法运算与多项式的乘法运算类似;(2)复数的除法运算,将分子分母同时乘以分母的共轭复数,最后整理成abi(a,bR)的结构形式. (3)利用复数相等,可实现复数问题的实数化.转化与化归思想已知z是复数,z2i,均为实数,且(zai)2的对应点在第一象限,求实数a的取值范围. 【导学号:31062233】解设zxyi(x,yR),则z2ix(y2)i为实数,y2.又(x2i)(2i)(2x2)(x4)i为实数,x4.z42i,又(zai)2(42iai)2(124aa2)8(a2)i在第一象限,解得2a6.实数a的取值范围是(2,6)规律方法一般设出复数z的代数形式,即zxyi(x,yR),则涉及复数的分类、几何意义、模的运算、四则运算、共轭复数等问题,都可以转化为实数x,y应满足的条件,即复数问题实数化的思想是本章的主要思想方法.跟踪训练3已知x,y为共轭复数,且(xy)23xyi46i,求x,y.解设xabi(a,bR),则yabi.又(xy)23xyi46i,4a23(a2b2)i46i,或或或或或或

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3