收藏 分享(赏)

2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx

上传人:高**** 文档编号:15265 上传时间:2024-05-23 格式:DOCX 页数:6 大小:318.72KB
下载 相关 举报
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第1页
第1页 / 共6页
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第2页
第2页 / 共6页
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第3页
第3页 / 共6页
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第4页
第4页 / 共6页
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第5页
第5页 / 共6页
2018版高中数学苏教版选修2-1学案:3-2-2 空间线面关系的判定(二)垂直关系 .docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、32.2空间线面关系的判定(二)垂直关系学习目标1.会利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直(线线、线面、面面)关系知识点空间垂直关系的向量表示空间中的垂直关系线线垂直线面垂直面面垂直设直线l的方向向量为a(a1,a2,a3),直线m的方向向量为b(b1,b2,b3),则lmabab0设直线l的方向向量为a(a1,b1,c1),平面的法向量为u(a2,b2,c2),则lauaku,kR设平面的法向量为u(a1,b1,c1),平面的法向量为v(a2,b2,c2),则uvuv0思考1用向量法如何证明线面垂直?答案证直线的方向向量与平面的法向量平

2、行2平面上的向量a与平面上的向量b垂直,能判断吗?答案不能题型一证明线线垂直问题例1如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120,E,F分别为AC,DC的中点求证:EFBC.证明由题意,以点B为坐标原点,在平面DBC内过点B作垂直于BC的直线为x轴,BC所在直线为y轴,在平面ABC内过点B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系,易得B(0,0,0),A(0,1,),D(,1,0),C(0,2,0),因而E(0,),F(,0),所以(,0,),(0,2,0),因此0.从而,所以EFBC.反思与感悟证明两直线垂直的基本步骤:建立空间直角坐标系写出点的坐标

3、求直线的方向向量证明向量垂直得到两直线垂直跟踪训练1如图所示,在四棱锥PABCD中,PA底面ABCD,垂足为A,ABAD于A,ACCD于C,ABC60,PAABBC,E是PC的中点求证AECD.证明以A为坐标原点建立空间直角坐标系,设PAABBC1,则A(0,0,0),P(0,0,1)ABC60,ABC为正三角形C(,0),E(,)设D(0,y,0),由ACCD得0,即y,则D(0,0),(,0)又(,),0,即AECD.题型二证明线面垂直问题例2如图所示,在正方体ABCDA1B1C1D1中,E,F分别是BB1,D1B1的中点求证:EF平面B1AC.证明方法一设正方体的棱长为2,建立如图所示的

4、空间直角坐标系,则A(2,0,0),C(0,2,0),B1(2,2,2),E(2,2,1),F(1,1,2)(1,1,2)(2,2,1)(1,1,1)(2,2,2)(2,0,0)(0,2,2),(0,2,0)(2,0,0)(2,2,0)而(1,1,1)(0,2,2)(1)0(1)2120.(1,1,1)(2,2,0)2200,EFAB1,EFAC.又AB1ACA,AB1平面B1AC,AC平面B1AC,EF平面B1AC.方法二设a,c,b,则()()()(abc), ab.(abc)(ab)(b2a2cacb)(|b|2|a|200)0.,即EFAB1,同理,EFB1C.又AB1B1CB1,AB

5、1平面B1AC,B1C平面B1AC,EF平面B1AC.反思与感悟本类型题目用向量法证明的关键步骤是建立空间直角坐标系,用坐标表示向量或用基底表示向量,证法的核心是利用向量的数量积或数乘运算跟踪训练2如图所示,在正方体ABCDA1B1C1D1中,O为AC与BD的交点,G为CC1的中点求证:A1O平面GBD.证明方法一如图取D为坐标原点,DA、DC、DD1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系设正方体棱长为2,则O(1,1,0),A1(2,0,2),G(0,2,1),B(2,2,0),D(0,0,0),(1,1,2),(1,1,0),(2,0,1),而1100,2020.,即OA1OB

6、,OA1BG,而OBBGB,OA1平面GBD.方法二同方法一建系后,设面GBD的一个法向量为n(x,y,z),则令x1得z2,y1,平面GBD的一个法向量为(1,1,2),显然(1,1,2)n,n,A1O平面GBD.题型三证明面面垂直问题例3如图,底面ABCD是正方形,AS平面ABCD,且ASAB,E是SC的中点求证:平面BDE平面ABCD.证明设ABBCCDDAAS1,建立如图所示的空间直角坐标系Axyz,则B(1,0,0),D(0,1,0),A(0,0,0),S(0,0,1),E(,),连结AC,设AC与BD相交于点O,连结OE,则点O的坐标为(,0)因为(0,0,1),(0,0,),所以

7、,所以.又因为AS平面ABCD,所以OE平面ABCD,又OE平面BDE,所以平面BDE平面ABCD.反思与感悟利用空间向量证明面面垂直通常可以有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,证明两个法向量垂直,从而得到两个平面垂直跟踪训练3在三棱柱ABCA1B1C1中,AA1平面ABC,ABBC,ABBC2,AA11,E为BB1的中点,求证:平面AEC1平面AA1C1C.证明由题意知直线AB,BC,B1B两两垂直,以点B为原点,分别以BA,BC,BB1所在直线为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),

8、A1(2,0,1),C(0,2,0),C1(0,2,1),E(0,0,),故(0,0,1),(2,2,0),(2,2,1),(2,0,)设平面AA1C1C的法向量为n1(x,y,z),则即令x1,得y1,故n(1,1,0)设平面AEC1的法向量为n2(a,b,c),则即令c4,得a1,b1.故n2(1,1,4)因为n1n2111(1)040,所以n1n2.所以平面AEC1平面AA1C1C.1已知平面的法向量为a(1,2,2),平面的法向量为b(2,4,k),若,则k_.答案5解析,ab,ab282k0,k5.2设直线l1,l2的方向向量分别为a(2,2,1),b(3,2,m),若l1l2,则m

9、_.答案10解析l1l2,ab0,2322m0,m10.3若平面,垂直,则下面可以作为这两个平面的法向量的是_(填序号)n1(1,2,1),n2(3,1,1)n1(1,1,2),n2(2,1,1)n1(1,1,1),n2(1,2,1)n1(1,2,1),n2(0,2,2)答案解析1(3)21110,n1n20,故填.4若直线l的方向向量为a(2,0,1),平面的法向量为n(4,0,2),则直线l与平面的位置关系为_答案l解析a(2,0,1),n(4,0,2),n2a,an,l.5已知平面和平面的法向量分别为a(1,1,2),b(x,2,3),且,则x_.答案4解析,ab0,x2230,x4.正确应用向量方法解决空间中的垂直关系(1)线线垂直设直线l1、l2的方向向量分别是a、b,则要证明l1l2,只要证明ab,即ab0.(2)线面垂直设直线l的方向向量是a,平面的法向量是u,则要证l,只需证明au.根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直即:设a、b在平面内(或与平面平行)且a与b不共线,直线l的方向向量为c,则lca且cbacbc0.(3)面面垂直根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直证明两个平面的法向量互相垂直

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3