ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:39KB ,
资源ID:1524636      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1524636-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015届高考人教版数学(理)大一轮复习(2009-2013高考题库)第6章第8节数学归纳法.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015届高考人教版数学(理)大一轮复习(2009-2013高考题库)第6章第8节数学归纳法.DOC

1、20092013年高考真题备选题库第6章 不等式、推理与证明及不等式选讲(选修4-5)第8节 数学归纳法考点 数学归纳法1(2013江苏,10分)设数列an:1,2,2,3,3,3,4,4,4,4,(1)k1k,(1)k1k,即当n(kZ*)时,an(1)k1k.记Sna1a2an(nN*)对于lN*,定义集合Pln|Sn是an的整数倍,nN*,且1nl(1)求集合P11中元素的个数;(2)求集合P2 000中元素的个数解:本小题主要考查集合、数列的概念和运算、计算原理等基础知识,考查探究能力及运用数学归纳法的推理论证能力(1)由数列an的定义得a11,a22,a32,a43,a53,a63,

2、a74,a84,a94,a104,a115,所以S11,S21,S33,S40,S53,S66,S72,S82,S96,S1010,S115,从而S1a1,S40a4,S5a5,S62a6,S11a11,所以集合P11中元素的个数为5.(2)先证:Si(2i1)i(2i1)(iN*)事实上,当i1时,Si(2i1)S33,i(2i1)3,故原等式成立;假设im时成立,即Sm(2m1)m(2m1),则im1时,S(m1)(2m3)Sm(2m1)(2m1)2(2m2)2m(2m1)4m3(2m25m3)(m1)(2m3)综合可得Si(2i1)i(2i1)于是S(i1)(2i1)Si(2i1)(2i

3、1)2i(2i1)(2i1)2(2i1)(i1)由上可知Si(2i1)是2i1的倍数,而ai(2i1)j2i1(j1,2,2i1),所以Si(2i1)jSi(2i1)j(2i1)是ai(2i1)j(j1,2,2i1)的倍数又S(i1)(2i1)(i1)(2i1)不是2i2的倍数,而a(i1)(2i1)j(2i2)(j1,2,2i2),所以S(i1)(2i1)jS(i1)(2i1)j(2i2)(2i1)(i1)j(2i2)不是a(i1)(2i1)j(j1,2,2i2)的倍数故当li(2i1)时,集合Pl中元素的个数为13(2i1)i2,于是,当li(2i1)j(1j2i1)时,集合Pl中元素的个

4、数为i2j.又2 00031(2311)47,故集合P2 000中元素的个数为312471 008.2(2012湖北,14分)(1)已知函数f(x)rxxr(1r)(x0),其中r为有理数,且0r1.求f(x)的最小值;(2)试用(1)的结果证明如下命题:设a10,a20,b1,b2为正有理数若b1b21,则a1b1a2b2a1b1a2b2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题注:当为正有理数时,有求导公式(x)1x1.解:(1)f(x)rrxr1r(1xr1),令f(x)0,解得x1.当0x1时,f(x)0,所以f(x)在(0,1)内是减函数;当x1时,f

5、(x)0,所以f(x)在(1,)内是增函数故函数f(x)在x1处取得最小值f(1)0.(2)由(1)知,当x(0,)时,有f(x)f(1)0,即xrrx(1r),若a1,a2中至少有一个为0,则ab11ab22a1b1a2b2成立;若a1,a2均不为0,又b1b21,可得b21b1,于是在中令x,rb1,可得()b1b1(1b1),即ab11a1b12a1b1a2(1b1),亦即ab11ab22a1b1a2b2.综上,对a10,a20,b1,b2为正有理数且b1b21,总有ab11ab22a1b1a2b2.(3)(2)中命题的推广形式为设a1,a2,an为非负实数,b1,b2,bn为正有理数若

6、b1b2bn1,则ab11ab22abnna1b1a2b2anbn.用数学归纳法证明如下:(1)当n1时,b11,有a1a1,成立(2)假设当nk时,成立,即若a1,a2,ak为非负实数,b1,b2,bk为正有理数,且b1b2bk1,则ab11ab22abkka1b1a2b2akbk.当nk1时,已知a1,a2,ak,ak1为非负实数,b1,b2,bk,bk1为正有理数,且b1b2bkbk11,此时0bk11,即1bk10,于是ab11ab22abkkabk1k1(ab11ab22abkk)abk1k1(aaa)1bk1abk1k1.因1,由归纳假设可得aaaa1a2ak,从而ab11ab22abkkabk1k1()1bk1abk1k1.又因(1bk1)bk11,由得()1bk1abk1k1(1bk1)ak1bk1a1b1a2b2akbkak1bk1,从而ab11ab22abkkabk1k1a1b1a2b2akbkak1bk1,故当nk1时,成立由(1)(2)可知,对一切正整数n,所推广的命题成立说明:(3)中如果推广形式中指出式对n2成立,则后续证明中不需讨论n1的情况

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3