1、高考资源网() 您身边的高考专家自我小测1若函数yx2x且y0,则x()A. B Cln 2 Dln 22若函数yf(x)在xx0处的导数值与函数值互为相反数,则x0的值()A等于0 B等于1C等于 D不存在3曲线yx32x1在点(1,0)处的切线方程为()Ayx1 Byx1Cy2x2 Dy2x24设f0(x)sin x,f1(x)f0(x),f2(x)f1(x),fn1(x)fn(x),nN,则f2 014(x)()Asin x Bsin xCcos x Dcos x5已知函数f(x)sin x2xf,则f与f的大小关系是()Aff BffCff D不能确定6已知函数f(x),则f(2)_.
2、7已知函数f(x)x3(3a)xb.若f(2)7,则f(2)_.8已知函数f(x)的导函数为f(x),且满足f(x)3x22xf(2),则f(5)_.9求下列函数的导数(1)ytan x;(2)yxsin x;(3)f(x)3xsin x;(4)yln.10已知f(x)Asin(x)(A0,0),f(x)是f(x)的导数,g(x)f(x)f(x),若g(x)的最大值是4,一条对称轴是y轴,求f(x)参考答案1解析:因为yx2x,所以y2xx2xln 2.令2xx2xln 20,解得x.答案:B2解析:y,f(x0).又f(x0),依题意得0,解得x0.答案:C3解析:y3x22,曲线在点(1,
3、0)处的切线的斜率k1,切线方程为y01(x1),即yx1.答案:A4解析:f0(x)sin x,f1(x)f0(x)(sin x)cos x,f2(x)f1(x)(cos x)sin x,f3(x)f2(x)(sin x)cos x,f4(x)f3(x)(cos x)sin x,4为最小正周期,f2 014(x)f2(x)sin x.答案:B5解析:因为f(x)sin x2xf,所以f(x)cos x2f.令x,得f2f,所以f.这时f(x)sin xx,所以f,f,ff0,所以ff.答案:B6解析:f(x),于是f(2)0.答案:07解析:f(x)x23a是偶函数,所以f(2)f(2)7.
4、答案:78解析:由f(x)3x22xf(2),得f(x)6x2f(2),令x2,得f(2)122f(2),所以f(2)12,这样f(x)6x24,故f(5)65246.答案:69解:(1)ytan x,y.(2)y(xsin x)sin xxcos x.(3)(3xsin x)(3x)sin x3x(sin x)3xln 3sin x3xcos x3x(sin xln 3cos x);,f(x)3x(sin xln 3cos x).(4)yln(x1),y(x1).10解:f(x)Asin(x),f(x)Acos(x),g(x)f(x)f(x)Asin(x)Acos(x)2Asin.g(x)的最大值是4,2A4,A2.又g(x)的一条对称轴是y轴,即g(x)是偶函数,g(x)g(x),sinsin,sinxcos0,k(kZ)0,f(x)2sin.高考资源网版权所有,侵权必究!