1、难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.难点磁场()已知偶函数f(x)在(0,+)上为增函数,且f(2)=0,解不等式flog2(x2+5x+4)0.案例探究例1已知奇函数f(x)是定义在(3,3)上的减函数,且满足不等式f(x3)+f(x23)0,设不等式解集为A,B=Ax|1x,求函数g(x)=3x2+3x4(xB)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属级题目.知识依托:主要依据函数的性质去解决问题.
2、错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由且x0,故0x,又f(x)是奇函数,f(x3)3x2,即x2+x60,解得x2或x3,综上得2x,即A=x|2x,B=Ax|1x=x|1xf(0)对所有0,都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函
3、数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:f(x)是R上的奇函数,且在0,+)上是增函数,f(x)是R上的增函数.于是不等式可等价地转化为f(cos23)f(2mcos4m),即cos232mcos4m,即cos2mcos+2m20.设t=cos,则问题等价地转化为函数g(t)=t2mt+2m2=(t)2+2m2在0,1上的值恒为正,又转化为函数g(t)在0,1上的最小值为正.当0,即m0m1与m042m4+2,421,即m2时,g(1)=m10m1.m2综上,
4、符合题目要求的m的值存在,其取值范围是m42.锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.歼灭难点训练一、选择题1.()设f(x)是(,+)上的奇函数,f(x+2)=f(x),当0x1时,f(x)=x,则f(7.5)等于( )A.0.5B.0.5C.1
5、.5D.1.52.()已知定义域为(1,1)的奇函数y=f(x)又是减函数,且f(a3)+f(9a2)0,则a的取值范围是( )A.(2,3)B.(3,)C.(2,4)D.(2,3)二、填空题3.()若f(x)为奇函数,且在(0,+)内是增函数,又f(3)=0,则xf(x)lg.7.()定义在(,4上的减函数f(x)满足f(msinx)f(+cos2x)对任意xR都成立,求实数m的取值范围.8.()已知函数y=f(x)= (a,b,cR,a0,b0)是奇函数,当x0时,f(x)有最小值2,其中bN且f(1)1.f()f()f(1),f()f()f(1).答案:f()f()f(1)三、5.解:函
6、数f(x)在(,0)上是增函数,设x1x20,因为f(x)是偶函数,所以f(x1)=f(x1),f(x2)=f(x2),由假设可知x1x20,又已知f(x)在(0,+)上是减函数,于是有f(x1)f(x2),即f(x1)f(x2),由此可知,函数f(x)在(,0)上是增函数.6.解:(1)a=1.(2)f(x)= (xR)f-1(x)=log2 (1x1.(3)由log2log2log2(1x)log2k,当0k2时,不等式解集为x|1kx1;当k2时,不等式解集为x|1x1.7.解:,对xR恒成立,m,3.8.解:(1)f(x)是奇函数,f(x)=f(x),即c=0,a0,b0,x0,f(x)=2,当且仅当x=时等号成立,于是2=2,a=b2,由f(1)得即,2b25b+20,解得b2,又bN,b=1,a=1,f(x)=x+.(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2x0,y0)也在y=f(x)图象上,则消去y0得x022x01=0,x0=1.y=f(x)图象上存在两点(1+,2),(1,2)关于(1,0)对称.