1、第二章函数与导数第2课时函数的定义域和值域(对应学生用书(文)、(理)910页)考情分析考点新知 函数的定义域是研究一切函数的源头,求各种类型函数的定义域是高考中每年必考的试题. 函数的值域和最值问题也是高考的必考内容,一般不会对值域和最值问题单独命题,主要是结合其他知识综合考查,特别是应用题;再就是求变量的取值范围,主要是考查求值域和最值的基本方法 会求简单函数的定义域. 掌握求函数值域与最值的常用方法. 能运用求值域与最值的常用方法解决实际问题.1. (必修1P27练习6改编)函数f(x)的定义域为_答案:x|x1且x22. (必修1P27练习7改编)函数f(x)(x1)21,x1,0,1
2、,2,3的值域是_答案:1,0,3解析:f(1)f(3)3,f(0)f(2)0,f(1)1,则所求函数f(x)的值域为1,0,33. (必修1P31习题3改编)函数f(x)的值域为_答案:解析:由题可得f(x). 5x10, f(x), 值域为.4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有_(填序号) f(x)x0,g(x); f(x),g(x); f(x)x2,g(x)()4; f(x)|x|,g(x)答案:解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,符合5. (必修1P36习题1
3、3改编)已知函数f(x)x22x,xa,b的值域为1,3,则ba的取值范围是_答案:2,4解析:f(x)x22x(x1)21,因为xa,b的值域为1,3,所以当a1时,1b3;当b3时,1a1,所以ba2,41. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合(2) 求定义域的步骤 写出使函数式有意义的不等式(组) 解不等式组 写出函数定义域(注意用区间或集合的形式写出)(3) 常见基本初等函数的定义域 分式函数中分母不等于零 偶次根式函数、被开方式大于或等于0. 一次函数、二次函数的定义域为R yax,ysinx,ycosx,定义域均为R ytanx的定义域为x|xk,
4、kZ 函数f(x)xa的定义域为x|x02. 函数的值域(1) 在函数yf(x)中,与自变量x的值对应的y的值叫函数值,函数值的集合叫函数的值域(2) 基本初等函数的值域 ykxb(k0)的值域是R yax2bxc(a0)的值域:当a0时,值域为,);当a0且a1)的值域是(0,) ylogax(a0且a1)的值域是R ysinx,ycosx的值域是1,1 ytanx的值域是R3. 最大(小)值一般地,设函数f(x)的定义域为I,如果存在实数M满足:(1) 对于任意的xI,都有f(x)M(f(x)M);(2) 存在x0I,使得f(x0)M,那么称M是函数yf(x)的最大(小)值备课札记题型1求
5、函数的定义域例1 求下列函数的定义域:(1) ylg(3x1);(2) y.解:(1)由解得x且x2,所求函数的定义域为.(2) 由解得1x0或0x2,所求函数的定义域为(1,0)(0,2(1) 求函数y的定义域;(2) 若函数yf(x)的定义域是0,2,求函数g(x)的定义域解:(1) 由得所以x1或1x0,即定义域是(,1)(1,0)(2) 由得0x1)解:(1) (换元法)设t,t0,则y(t22)t2,当t时,y有最小值,故所求函数的值域为.(2) (配方法)配方,得y(x1)24,因为x(1,4,结合图象知,所求函数的值域为4,5(3) (解法1)由y2,结合图象知,函数在3,5上是
6、增函数,所以ymax,ymin,故所求函数的值域是.(解法2)由y,得x.因为x3,5,所以35,解得y,即所求函数的值域是.(4) (基本不等式法)令tx1,则xt1(t0),所以yt2(t0)因为t22,当且仅当t,即x1时,等号成立,故所求函数的值域为22,)求下列函数的值域:(1) f(x);(2) g(x);(3) ylog3xlogx31.解:(1) 由解得3x1. f的定义域是. y0, y242,即y242.令t4. x,由t0,t4,t0, 0t4,从而y2,即y, 函数f的值域是.(2) g1. x3且x4, g1且g6. 函数g的值域是.(3) 函数的定义域为x|x0且x
7、1当x1时,log3x0,ylog3xlogx31211;当0x1时,log3x0,ylog3xlogx31(log3x)(logx3)213.所以函数的值域是(,31,)题型3函数值域和最值的应用例3 已知函数f(x)x24ax2a6.(1) 若f(x)的值域是0,),求a的值;(2) 若函数f(x)0恒成立,求g(a)2a|a1|的值域解:(1) f(x)的值域是0,),即fmin(x)0, 0, a1或.(2) 若函数f(x)0恒成立,则(4a)24(2a6)0,即2a2a30, 1a, g(a)2a|a1|当1a1,g(a)a2a2, g(a);当11)(1) 求函数f(x)的值域;(
8、2) 若x2,1时,函数f(x)的最小值是7,求a的值及函数f(x)的最大值解:(1) 由题意,知f(x)2(1ax)2,因为ax0,所以f(x)1,所以当x2,1时,a2axa,于是fmin(x)2(a1)27,所以a2,此时,函数f(x)的最大值为2(221)2.1. (2013大纲)已知函数f(x)的定义域为(1,0),则函数f(2x1)的定义域为_答案:解析:由12x10,得1x,所以函数f(2x1)的定义域为.2. (2013山东)函数f(x)的定义域为_答案:(3,0解析:由题意,所以3x0,即定义域为(3,03. (2013北京)函数f(x)的值域为_答案:(,2)解析:当x1时
9、,logxlog10,即f(x)0;当x1时,02x21,即0f(x)b0,且f(a)f(b),则bf(a)的取值范围是_答案:解析:画出分段函数的图象,从图象可知,b1,1alog2,f(a)f(b),得bf(a)bf(b)b(b2)(b1)21在上单调增,故bf(a)的取值范围是.1. 设函数g(x)x22(xR),f(x)则f(x)的值域是_答案:(2,)解析:由题意f(x)下面分段求值域,再取并集2. 已知二次函数f(x)ax2xc(xR)的值域为0,),则的最小值为_答案:10解析:由二次函数的值域是0,),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a0,0,从而c0.
10、又24210,当且仅当即a时取等号,故所求的最小值为10.3. 已知函数f(x)log(|x|3)的定义域是a,b(a、bZ),值域是1,0,则满足条件的整数对(a,b)有_对答案:5解析:由f(x)log(|x|3)的值域是1,0,易知t(x)|x|的值域是0,2, 定义域是a,b(a、bZ), 符合条件的(a,b)有(2,0),(2,1),(2,2),(0,2),(1,2)共5个4. 已知二次函数f(x)ax2bx(a、b为常数,且a0)满足条件:f(x1)f(3x),且方程f(x)2x有等根(1) 求f(x)的解析式;(2) 是否存在实数m、n(mn),使f(x)定义域和值域分别为m,n
11、和4m,4n?如果存在,求出m、n的值;如果不存在,说明理由解:(1) f(x)x22x.(2) 由f(x)x22x(x1)21,知fmax(x)1, 4n1,即n1.故f(x)在m,n上为增函数, 解得 存在m1,n0,满足条件1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合备课札记