ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:533.50KB ,
资源ID:1508101      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1508101-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新步步高》2017版高考数学北师大版(理)一轮复习 第10章 计数原理 10.1 分类加法计数原理与分步乘法计数原理 文档.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新步步高》2017版高考数学北师大版(理)一轮复习 第10章 计数原理 10.1 分类加法计数原理与分步乘法计数原理 文档.doc

1、1分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,在第n类办法中有mn种方法那么,完成这件事共有Nm1m2mn种方法(也称加法原理)2分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,做第n步有mn种方法那么,完成这件事共有Nm1m2mn种方法(也称乘法原理)3分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件

2、事才算完成【思考辨析】判断下面结论是否正确(请在括号中打“”或“”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事()(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成()(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mi(i1,2,3,n),那么完成这件事共有m1m2m3mn种方法()(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的()1(教材改编)三个人踢毽子,互相传递,每人每次只能踢一下由甲开始踢,

3、经过3次传递后,毽子又被踢回给甲则不同的传递方式共有()A5种B2种C3种D4种答案B解析传递方式有甲乙丙甲;甲丙乙甲2从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A6B5C3D2答案B解析5个人中每一个都可主持,所以共有5种选法3设集合A0,1,2,3,4,5,6,7,如果方程x2mxn0(m,nA)至少有一个根x0A,就称方程为合格方程,则合格方程的个数为()A13B15C17D19答案C解析当m0时,取n0,1,4,方程为合格方程;当m1时,取n0,2,6,方程为合格方程;当m2时,取n0,3,方程为合格方程;当m3时,取n0,4,方程为合格方程;当m4时,取n0

4、,5,方程为合格方程;当m5时,取n0,6,方程为合格方程;当m6时,取n0,7,方程为合格方程;当m7时,取n0,方程为合格方程综上可得,合格方程的个数为17,故选C.4用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个(用数字作答)答案14解析数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C4个四位数“2”出现2次,“3”出现2次,共可组成C6个四位数“2”出现3次,“3”出现1次,共可组成C4个四位数综上所述,共可组成14个这样的四位数5(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有_种答

5、案32解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2222232(种).题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三

6、班任选一名学生共有55种选法根据分类加法计数原理,任选一名学生任学生会主席共有506055165种选法(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法综上知,共有30302080种选法思维升华分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A

7、144个B120个C96个D72个答案B解析由题意知,首位数字只能是4,5,若万位是5,则有3A72个;若万位是4,则有2A48个,故比40000大的偶数共有7248120个选B.题型二分步乘法计数原理的应用例2(1)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A12种B18种C24种D36种(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有_种不同的报名方法答案(1)A(2)120解析(1)先排第一列,由于每列的字母互不相同,因此共有6种不同排法;再排第二列,其中第二列第一行的字母共有2种不同的排

8、法,第二列第二、三行的字母只有1种排法因此共有62112种不同的排列方法(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有654120种引申探究1本例(2)中将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36729种2本例(2)中将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限

9、”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63216种(1)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A3360元B6720元C4320元D8640元(2)用0,1,2,3,4,5可组成无重复数字的三位数的个数为_答案(1)D(2)100解析(1)从01至10中选3个连续的号共有8种选法;从11至20中选2个连续

10、的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选1个号有6种选法,根据分步乘法计数原理,得共有891064320种,所以至少需花432028640(元)(2)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法根据分步乘法计数原理,三位数个数为554100.题型三两个计数原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即

11、可得出结论由题设,四棱锥SABCD的顶点S、A、B所染的颜色互不相同,它们共有54360种染色方法当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法可见,当S、A、B已染好时,C、D还有3227种染法,故不同的染色方法有607420种方法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是

12、否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法由分步乘法、分类加法计数原理得不同的染色方法共有543(1322)420种方法三按所用颜色种数分类第一类,5种颜色全用,共有A种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2A种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A种不同的方法由分类加法计数原理,得不同的染色方法种数为A2AA35420.思维升华(1)应用两个计数原理的难点在于明确分类还是分步(2)分类要做到“不重不漏”,正确把握分类标准是关键

13、(3)分步要做到“步骤完整”,步步相连能将事件完成(4)较复杂的问题可借助图表完成如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A30种B27种C24种D21种答案A解析由题意知本题需要分类来解答,首先A选取一种颜色,有3种情况如果A的两个相邻点颜色相同,有2种情况;这时最后两个点也有2种情况;如果A的两个相邻点颜色不同,有2种情况;这时最后两个点有3种情况所以方法共有3(2223)30种15对两个基本原理认识不清致误典例(1)把3封信投到4个信箱,所有可能的投法共有()A24种B4种C43种D34种(

14、2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有_种易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意到一封信只能投在一个信箱中;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法只要把这3封信投完,就做完了这件事情,由分步

15、乘法计数原理可得共有43种方法(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有437种答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么选择合理的标准处理事情,可以避免计数的重复或遗漏方法与技巧1分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互

16、独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事2分类标准要明确,做到不重复不遗漏3混合问题一般是先分类再分步4要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律失误与防范1切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行2分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步3确定题目中是否有特殊条件限制A组专项基础训练(时间:35分钟)1从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24B18C12D6

17、答案B解析三位数可分成两种情况:(1)奇偶奇;(2)偶奇奇对于(1),个位(3种选择),十位(2种选择),百位(2种选择),共12种;对于(2),个位(3种选择),十位(2种选择),百位(1种选择),共6种,即12618.故选B.2一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A12种B15种C17种D19种答案D解析分三类:(1)有一次取到3号球,共有C2212(种)取法;(2)有两次取到3号球,共有C26(种)取法;(3)三次都取到3号球,有1种取法共有19种取法3从集合1,2,3,4,10中,选出5

18、个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A32个B34个C36个D38个答案A解析将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C2种,共有2222232个故选A.4集合Px,1,Qy,1,2,其中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A9B14C15D21答案B解析当x2时,xy,点的个数为177;当x2时,xy,点的个数为717,则共有14个点,故选B.5从2、1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数yax2bxc的系数a

19、、b、c,则可以组成顶点在第一象限且过原点的抛物线条数为()A6B20C100D120答案A解析分三步:第一步c0只有1种方法;第二步确定a,a从2、1中选一个,有2种不同方法;第三步确定b,b从1、2、3中选一个,有3种不同的方法根据分步乘法计数原理得1236种不同的方法62015北京世界田径锦标赛上,8名女运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种答案2880解析分两步安排这8名运动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排所以安排方式有43224种第二步:安排另外5人,可在2

20、,4,6,8及余下的一条奇数号跑道安排,所以安排方式有54321120种所以安排这8人的方式有241202880种7如图,将网格中的三条线段沿网格线上下或左右平移,组成一个首尾相接的三角形,则三条线段一共至少需要移动_格答案9解析如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,根据平移的基本性质知:左边的线段向右平移3格,中间的线段向下平移2格,最右边的线段先向左平移2格,再向上平移2格,此时平移的格数最少为32229,其他平移方法都超过9格,至少需要移动9格8将数字1,2,3,4填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有_种答

21、案9解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法于是由分类加法计数原理,得共有3339种不同的填法9有一项活动需在3名老师,6名男同学和8名女同学中选人参加,(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师,男同学,女同学各一人参加,有多少种不同选法?解(1)只需一人参加,可按老师,男同学,女同学分三类各自有3,6,8种方法,总方法数为36817种.(2)分两步,先选教师共3种选法,再选学生共6814种选法,由分步乘法计数原理知,总方法数为3144

22、2种.(3)教师,男同学,女同学各一人可分三步,每步方法依次为3,6,8种由分步乘法计数原理知总方法数为368144种10为了做好阅兵人员的运输,从某运输公司抽调车辆支援,该运输公司有7个车队,每个车队的车辆均多于4辆现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解在每个车队抽调1辆车的基础上,还需抽调3辆车可分成三类:一类是从某1个车队抽调3辆,有C种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A种抽调方法;一类是从3个车队中各抽调1辆,有C种抽调方法故共有CAC84种抽调方法B组专项能力提升(时间:30分钟)11将2名

23、教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种B10种C9种D8种答案A解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C2种选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C6种选派方法由分步乘法计数原理,不同选派方案共有2612种12已知集合M1,2,3,N1,2,3,4,定义函数f:MN.若点A(1,f(1)、B(2,f(2)、C(3,f(3),ABC的外接圆圆心为D,且(R),则满足条件的函数f(x)有()A6种B10种C12种D16种答案C解析由(R),说明ABC是等腰三角形,且B

24、ABC,必有f(1)f(3),f(1)f(2)当f(1)f(3)1时,f(2)2、3、4,有三种情况;f(1)f(3)2,f(2)1、3、4,有三种情况;f(1)f(3)3,f(2)2、1、4,有三种情况;f(1)f(3)4,f(2)2、3、1,有三种情况因而满足条件的函数f(x)有12种13回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等显然2位回文数有9个:11,22,33,99.3位回文数有90个:101,111,121,191,202,999.则(1)4位回文数有_个;(2)2n1(nN)位回文数有_个答案(1)90(2)910n解析(1)4位回文数

25、相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计91090种填法,即4位回文数有90个(2)根据回文数的定义,此问题也可以转化成填方格结合分步乘法计数原理,知有910n种填法14某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解由题意得有1人既会英语又会日语,6人只会英语,2人只会日语第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有213种,此时共有6318种;第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有122种;所以根据分类

26、加法计数原理知共有18220(种)选法15.将红、黄、绿、黑4种不同的颜色分别涂入图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同涂色方法?解方法一本题利用了分步乘法计数原理求涂色问题给出区域标记号A,B,C,D,E(如图),则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色依赖于B与D涂的颜色,如果B与D颜色相同有2种涂色方法,不相同,则只有1种因此应先分类后分步当B与D同色时,有4321248种;当B与D不同色时,有4321124种故共有482472种不同的涂色方法方法二按用3种或用4种颜色分两类,第一类用3种,此时A与E,B与D分别同色,于是涂法种数为A24种;第二类用4种,此时A与E,B与D有且只有一组同色,涂法种数为2A48种由分类加法计数原理知涂法总数为244872种

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3