1、2.2函数的表示法(一)学习目标1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图像上获取有用的信息知识点一解析法思考一次函数如何表示?梳理一个函数的对应关系可以用自变量的解析表达式(简称解析式)表示出来,这种方法称为解析法知识点二图像法思考要知道林黛玉长什么样,你觉得一个字的描述和一张二寸照片哪个更直观?梳理用图像把两个变量间的函数关系表示出来的方法,称为图像法知识点三列表法思考在街头随机找100人,请他们依次随意地写一个数字设找的人序号为x,x1,2,3,100.第x个人写下的数字为y,则x与y之间是不是函数关系?能否用解析式表示?梳理用表格的形式表
2、示两个变量之间函数关系的方法,称为列表法函数三种表示法的优缺点:类型一解析式的求法例1根据下列条件,求f(x)的解析式(1)f(f(x)2x1,其中f(x)为一次函数;(2)f(x)x2;(3)f(x)2f(x)x22x.反思与感悟(1)如果已知函数类型,可以用待定系数法(2)如果已知f(g(x)的表达式,想求f(x)的解析式,可以设 tg(x),然后把f(g(x)中每一个x都换成t的表达式(3)如果条件是一个关于f(x)、f(x)的方程,我们可以用x的任意性进行赋值如把每一个x换成x,其目的是再得到一个关于f(x)、f(x)的方程,然后消元消去f(x)跟踪训练1根据下列条件,求f(x)的解析
3、式(1)f(x)是一次函数,且满足3f(x1)f(x)2x9;(2)f(x1)x24x1;(3)2f()f(x)x(x0)类型二图像的画法及应用例2试画出函数y的图像反思与感悟描点法作函数图像的三个关注点(1)画出函数图像时首先应关注函数的定义域,即在定义域内作图(2)图像是实线或实点,定义域外的部分有时可用虚线来衬托整个图像(3)要标出某些关键点,例如图像的顶点、端点、与坐标轴的交点等要分清这些关键点是实心点还是空心点跟踪训练2作出下列函数的图像并求出其值域(1)y2x1,x0,2;(2)y,x2,);(3)yx22x,x2,2例3已知f(x)的图像如图所示,则f(x)的定义域为_,值域为_
4、反思与感悟函数图像很直观,在解题过程中常用来帮助理解问题的数学本质,寻求最优解跟踪训练3函数f(x)x24x3(x0)的图像与ym有两个交点,求实数m的取值范围类型三列表法及函数表示法的选择例4下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 测试序号成绩姓名第1次第2次第3次第4次第5次第6次王伟988791928895张城907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6(1)选择合适的方法表示测试序号与成绩的关系;(2)根据表示出来的函数关系对这三位同学的学习情况进行分析反思与感悟函数的三种表示方法都
5、有各自的优点,有些函数能用三种方法表示,有些只能用其中的一种来表示跟踪训练4若函数f(x)如下表所示:x0123f(x)3210则f(f(1)_.1已知函数f(x)由下表给出,则f(f(3)等于()x1234f(x)3241A.1 B2 C3 D42如果二次函数的图像开口向上且关于直线x1对称,且过点(0,0),则此二次函数的解析式可以是()Af(x)x21Bf(x)(x1)21Cf(x)(x1)21Df(x)(x1)213已知正方形的边长为x,它的外接圆的半径为y,则y关于x的解析式为()Ayx ByxCyx Dyx4某同学从家里到学校,为了不迟到,先跑步,跑累了再走余下的路,设在途中花的时
6、间为t,离开家里的路程为d,下面图形中,能反映该同学的行程的是()5画出y2x24x3,x(0,3的图像,并求出y的最大值,最小值1如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域主要方法有:待定系数法、换元法、解方程组法(消元法)2如何作函数的图像一般地,作函数图像主要有三步:列表、描点、连线作图像时一般应先确定函数的定义域,再在定义域内化简函数解析式,再根据所列表中的点描出图像,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等3如何用函数图像常借助函数
7、图像研究定义域、值域、函数变化趋势及两个函数图像交点问题答案精析问题导学知识点一思考ykxb(k0)知识点二思考一张二寸照片知识点三思考对于任意一个人的序号x,都有一个他写的数字y与之对应,故x,y之间是函数关系,但因为人是随机找的,数字是随意写的,故难以用解析式表示这时可以制作一个表格来表示x的值与y的值之间的对应关系题型探究例1解(1)由题意,设f(x)axb(a0),f(f(x)af(x)ba(axb)ba2xabb2x1,由恒等式性质,得或所求函数解析式为f(x)x1或f(x)x1.(2)f(x)x2(x)22,f(x)x22.又x0,x2或x2,f(x)中的x与f(x)中的x取值范围
8、相同,f(x)x22,x(,22,)(3)f(x)2f(x)x22x,将x换成x,得f(x)2f(x)x22x,联立以上两式消去f(x),得3f(x)x26x,f(x)x22x.跟踪训练1解(1)由题意,设f(x)axb(a0),3f(x1)f(x)2x9,3a(x1)3baxb2x9,即2ax3a2b2x9,由恒等式性质,得a1,b3.所求函数解析式为f(x)x3.(2)设x1t,则xt1,f(t)(t1)24(t1)1,即f(t)t22t2.所求函数解析式为f(x)x22x2.(3)f(x)2f()x,将原式中的x与互换,得f()2f(x).于是得关于f(x)的方程组解得f(x)(x0)例
9、2解由1x20解得函数定义域为1,1当x1时,y有最小值0.当x0时,y有最大值1.x时,y.利用以上五点描点连线,即得函数y的图像如下:跟踪训练2解(1)列表:x012y12345当x0,2时,图像是直线的一部分,观察图像可知,其值域为1,5(2)列表:x2345y1当x2,)时,图像是反比例函数y的一部分,观察图像可知其值域为(0,1(3)列表:x21012y01038图像是抛物线yx22x在2x2之间的部分由图可得函数的值域是1,8例32,45,84,3解析函数的定义域对应图像上所有点横坐标的取值集合,值域对应纵坐标的取值集合跟踪训练3解f(x)x24x3(x0)图像如图,f(x)与直线ym图像有2个不同交点,由图易知1m3.例4解(1)不能用解析法表示,用图像法表示为宜在同一个坐标系内画出这四个函数的图像如下:(2)王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大赵磊同学的数学成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高跟踪训练41解析f(1)2,f(f(1)f(2)1.当堂训练1A2.D3.A4.C5解y2x24x3(0x3)的图像如下:由图易知,当x3时,ymax2324333.由y2x24x32(x1)25,当x1时,y有最小值5.