ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:267.19KB ,
资源ID:15033      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-15033-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《发布》四川省成都市树德中学2021-2022学年高一下学期期末考试 数学 PDF版含答案(可编辑).pdf)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《发布》四川省成都市树德中学2021-2022学年高一下学期期末考试 数学 PDF版含答案(可编辑).pdf

1、树德中学高 2021 级高一下期期末考试数学试题命题人:王钊审题人:肖兴佳、李小蛟、唐颖君考试时间:120 分钟;满分:150 分第 I 卷(选择题)一、选择题(本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量 a,b满足 a+b=(-1,5),a-b=(5,-3),则 b为()A.(-3,4)B.(3,4)C.(3,-4)D.(-3,-4)2.设 a,b 是两条不同的直线,,是两个不同的平面,则下列命题正确的是()A a b,a ,则 b B a ,a ,则 C a ,b ,,则 a bD a ,b ,a ,b ,则 3.在 AB

2、C 中,cos C2=55,BC=1,AC=5,则 AB=()A.4 2B.30C.29D.2 54.记 Sn为等差数列 an 的前 n 项和.若 3S3=S2+S4,a1=2,则 a5=()A.-12B.-10C.10D.125.已知 ABC 中,A=120,且 AB=3,AC=4,若 AP=AB+AC,且 AP BC,则实数 的值为()A.2215B.103C.6D.1276.某四棱锥的三视图,如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.47.已知数列 an 满足 an+1+(-1)n+1an=2,则其前 100 项和为()A.250B.200C.150D.1

3、008.在棱长为 a 的正方体 ABCD-A1B1C1D1中,E 为 AA1的中点,则过 B、C1、E 三点的平面截正方体ABCD-A1B1C1D1所得的截面面积为()A 3 108a2B 98 a2C 3 24a2D102a29.设 an=1n sin n10,Sn=a1+a2+an,在 S1,S2,S20中,正数的个数是()A 15B 16C 18D 2010.已知动直线 l:ax+by+c-2=0(a 0,c 0)恒过点 P(1,m)且 Q(4,0)到动直线 l 的最大距离为3,则 12a+2c 的最小值为()A.92B.94C.1D.911.已知三棱锥 S-ABC 中,AB BC,AB

4、=BC=2,SA=SC=2 2,二面角 B-AC-S 的大小为23,则三棱锥 S-ABC 的外接球的表面积为()A.1249B.1054C.1059D.104912.在锐角 ABC 中,角 A,B,C 的对边分别为 a,b,c,S 为 ABC 的面积,且 2S=a2-b-c2,则2b2+c2bc的取值范围为()A4315,5915B 2 2,4315C 2 2,5915D.2 2,+第 II 卷(非选择题)二、填空题(本题共 4 小题,每小题 5 分,共 20 分)13.若直线 l1:x+3y+m=0(m 0)与直线 l2:2x+6y-3=0 的距离为10,则 m=_.14.设等比数列 an

5、中,前 n 项和为 Sn,已知 S3=8,S6=7,则 a7+a8+a9等于 _.15.已知 f(x)=sin x-cos x 23,若函数 f(x)图象的任何一条对称轴与 x 轴交点的横坐标都不属于区间(,2),则 的取值范围是 _.16.如图所示,在棱长为 1 的正方体 ABCD-A1B1C1D1 中,P,Q 分别为 BD1,BB1 上的动点,则三角形C1PQ 的周长最小值为 _.三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步骤)17.(10 分)已知,为锐角,tan =43,cos(+)=-55.(1)求 cos 2 的值;(2)求 tan(-)的值.

6、18.(12 分)已知数列 an 的前 n 项和为 Sn,a1=5,nSn+1-(n+1)Sn=n2+n.(1)求证:数列Snn为等差数列;(2)令 bn=2nan,求数列 bn 的前 n 项和 Tn.19.(12 分)如图,已知多面体 ABCA1B1C1,A1A,B1B,C1C 均垂直于平面 ABC,ABC=120,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1 平面 A1B1C1;(2)求直线 AC1与平面 ABB1所成的角的正弦值20.(12 分)在 ABC 中,内角 A,B,C 的对边分别是 a,b,c,已知 ABC 的外接圆半径 R=2,且 tan B+tan C

7、=2sinAcosC.(1)求 B 和 b 的值;(2)求 ABC 面积的最大值21.(12 分)已知正三角形 ABC 的边长为 a,CD 是 AB 边上的高,E,F 分别是 AC,BC 的中点,现将三角形 ADC 沿 CD 翻折至 ADC 的位置,使平面 ADC 平面 BCD,如图所示.(1)试判断翻折后直线 AB 与平面 DEF 的位置关系,并说明理由.(2)若三棱锥 E-DFC 的体积为324,求实数 a 的值.(3)在线段 AC 上是否存在一点 P,使得 BP DF?若存在,求出 APAC 的值;若不存在,请说明理由.22.(12 分)已知正项数列 an的前 n 项和为 Sn,4Sn=

8、an an+1+1,a1=1(1)求 an和 Sn;(2)若 bn=2an,数列 bn的前 n 项和为 Tn记 An=b2T1T2+b3T2T3+b4T3T4+bn+1TnTn+1,Bn=1S1+1S2+1S3+1Sn,求证:An+Bn 52,n N*树德中学高 2021 级高一下期期末考试数学试题答案一、选择题ABABACDBD B D C二、填空题13.17214.1815.34,7816.4+2 2三、解答题17.解(1)因为 tan =43,tan =sincos,所以 sin =43 cos.2 分因为 sin2+cos2=1,所以 cos2=925,因此,cos 2=2cos2-1

9、=-725.5 分(2)因为,为锐角,所以 +(0,).又因为 cos(+)=-55,所以 sin(+)=1-cos2(+)=2 55,因此 tan(+)=-2.7 分因为 tan =43,所以 tan 2=2tan1-tan2=-247,因此,tan(-)=tan2-(+)=tan2-tan(+)1+tan2tan(+)=-211.10 分18.(1)证明 由 nSn+1-(n+1)Sn=n2+n 得 Sn+1n+1-Snn=1,又 S11=5,所以数列Snn是首项为 5,公差为 1 的等差数列.5 分(2)解 由(1)可知 Snn=5+(n-1)=n+4,所以 Sn=n2+4n.当 n 2

10、 时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3.又 a1=5 也符合上式,所以 an=2n+3(n N*),.7 分所以 bn=(2n+3)2n,所以 Tn=5 2+7 22+9 23+(2n+3)2n,2Tn=5 22+7 23+9 24+(2n+1)2n+(2n+3)2n+1,所以-得Tn=(2n+3)2n+1-10-(23+24+2n+1)=(2n+3)2n+1-10-23(1-2n-1)1-2.10 分=(2n+3)2n+1-10-(2n+2-8)=(2n+1)2n+1-2.12 分19.(1)证明 由 AB=2,AA1=4,BB1=2,AA1 AB,BB

11、1 AB 得 AB1=A1B1=2 2,所以 A1B21+AB21=AA21,由 AB1 A1B1.由 BC=2,BB1=2,CC1=1,BB1 BC,CC1 BC得 B1C1=5,.3 分由 AB=BC=2,ABC=120 得 AC=2 3,由 CC1 AC,得 AC1=13,所以 AB21+B1C 21=AC 21,故 AB1 B1C1,又 A1B1 B1C1=B1,因此 AB1 平面 A1B1C1.6 分(2)解 如图,过点 C1作 C1D A1B1,交直线 A1B1于点 D,连接 AD.由 AB1 平面 A1B1C1,AB1 平面 ABB1,得平面 A1B1C1 平面 ABB1,由 C

12、1D A1B1得 C1D 平面 ABB1,所以 C1AD 是 AC1与平面 ABB1所成的角.8 分由 B1C1=5,A1B1=2 2,A1C1=21 得 cosC1A1B1=67,sinC1A1B1=17,所以 C1D=3,故 sinC1AD=C1DAC1=3913.因此,直线 AC1与平面 ABB1所成的角的正弦值是3913.12 分20.解:(1)因为 tan B+tan C=2sinAcosC,所以 sinBcosB+sinCcosC=2sinAcosC.所以 sinBcosC+cosBsinC=2sinAcosB,sin(B+C)=2sinAcosB,因为 A+B+C=,所以 sin

13、(B+C)=sinA.3 分因为 sinA 0,所以 cosB=22.因为 0 B ,所以 B=4.由正弦定理bsinB=2R,得 b=2R sinB=2 2 22=2.6 分(2)由余弦定理,得 b2=a2+c2-2ac cosB,所以 4=a2+c2-2ac.由基本不等式,得 4=a2+c2-2ac 2ac-2ac,所以 ac 42-2=2(2+2).因为 SABC=12 ac sinB=12 ac sin 4=24 ac,所以 SABC=24 ac 24 2(2+2)=1+2所以 ABC 面积的最大值为 1+2.12 分21.解:(1)AB 平面 DEF.理由如下:在 ABC 中,E,F

14、 分别是 AC,BC 的中点,EF AB,又 AB 平面 DEF,EF 平面 DEF,AB 平面 DEF.3 分(2)由题意,得 AD CD,平面 ADC 平面 BCD,AD 平面 BCD.取 CD 的中点 M,连接 EM,则 EM AD,如图,EM 平面 BCD,且 EM=a4.易得 SDFC=12 3a212 a2=3a216.三棱锥 E-DFC 的体积为324,13 a4 3a216=324,解得 a=2.7 分(3)在线段 AC 上存在一点 P,使得 BP DF.理由如下:易知三角形 BDF 为正三角形,过 B 作 BK DF 交DC 于点 K,连接 KF,过 K 作 KP DA 交

15、AC 于点 P,连接 BP,则点 P 即所求,.9 分如图,AD 平面 BCD,KP AD PK 平面 BCD,PK DF.又 BK DF,PK BK=K,DF 平面 PKB,DF PB.又 DBK=KBC=BCK=30,DK=KF=12 KC.故 APPC=DKKC=12,从而 APAC=13.12 分22.解(1)4Sn=an an+1+1,a1=1,4S1=a1 a2+1,a2=3,当 n 2 时,有 4Sn-1=anan-1+1,4Sn-4Sn+1=anan+1-an-1an,4an=an an+1-an-1,an 0,an+1-an-1=4.3 分 数列 an的奇数项是以 1 为首项

16、,4 为公差的等差数列,a2n-1=1+4(n-1)=2(2n-1)-1,.4 分偶数项是以 3 为首项,4 为公差的等差数列,a2n=3+4(n-1)=2 2n-1,.5 分 an=2n-1,n Z*,Sn=1+2n-1n2=n2.6 分(2)因为 bn=2an,所以 bn=22n-1,Tn=21+23+25+22n-1=23 4n-1,bn+1TnTn+1=22n+123 4n-123 4n+1-1=924n4n-14n+1-1=3214n-1-14n+1-1,.8 分n=1 时,A1=25,B1=1,A1+B1 52 n 2 时,An=3214-1-142-1+32142-1-143-1+3214n-1-14n+1-1=3213+14n+1-1=12-32 14n+1-1 12.9 分Bn=1+122+1n2 1+1-12+12-13+1n-1-1n=2-1n 2.11 分 An+Bn 52 An+Bn 52.12 分

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3