ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:45KB ,
资源ID:1502207      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1502207-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学人教B必修2学案:知识导航 2-1-1+2数轴上的基本公式 平面直角坐标系中的基本公式 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学人教B必修2学案:知识导航 2-1-1+2数轴上的基本公式 平面直角坐标系中的基本公式 WORD版含解析.doc

1、2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式知识梳理1.数轴上的基本公式(1)数轴上任意三点A、B、C,则AB+BC=AC;(2)数轴上任一个向量,设OB=x2,OA=x1,则AB=x2-x1;(3)已知数轴上两点A、B,OB=x2,OA=x1,则两点A、B的距离公式:d(A,B)=|x2-x1|.2.平面直角坐标系中的基本公式(1)平面直角坐标系上两点A(x1,y1)、B(x2,y2)的距离公式:d(A,B)=;(2)中点公式:两点A(x1,y1)、B(x2,y2)的中点M(x,y),则x=.知识导学 学习数轴上的基本公式要先复习数轴的

2、定义和性质以及与数轴相关的概念,如绝对值、相反数等. 学习本节后AB不再表示线段,而是表示(位移)向量,它的值可正也可负,还可以是0,它不但有长度,而且还有方向. 初学数轴上和平面直角坐标系中的基本公式时,一定要先画好数轴和平面直角坐标系,用数形结合的方法理解和掌握基本公式,要动手推导公式,在理解的基础上记忆,不要死记硬背.疑难突破1.引入数轴上向量的概念有何意义?剖析:教材引入数轴上向量的概念是为了正确地理解基本公式的推导和方程的概念,并为学习解析几何、三角函数和平面向量等后续数学内容打下基础.教材中用AB表示向量的坐标或数量,用|AB|表示向量的长度,学习中要正确识别这些符号.2.向量AB

3、和向量BA.剖析:实际上,数轴上的(位移)向量AB由两部分构成,一是方向,二是长度.与数轴的正方向一致时,它的方向用“+”表示(可以省略不写).当它与数轴的负方向一致时,它的方向用“-”表示.由于AB表示的是向量,所以AB和BA是两个不同的向量,二者不相等.(实)数轴上的向量AB与实数的构成有非常相似的地方,一个实数由两部分构成,一是(性质)符号;二是绝对值.类比实数的构成可以较容易地理解向量地意义.如图2-1-1所示,在数轴上把向量AB和向量BA画出方向,更直观地看到它们确实不相等.图2-1-(1,2)-13.如何表示数轴上两点的相对位置?剖析:数轴上两个点A和B的相对位置,用它们的(位移)

4、向量来表示,即如果AB是负的,则表示从点A指向点B的方向为数轴的负方向,则点A在点B的右方;如果AB是正的,则表示从点A指向点B的方向为数轴的正方向,则点A在点B的左方.数轴上两点的相对位置主要有两个方面,一是方向,谁在左,谁在右;二是距离,即两个点距离多远.将这两个方面回答清楚了,数轴上两个点的相对位置也就清楚了.4.利用中点坐标公式能解决哪些问题?剖析:中点公式及其变形式在实际解题中应用很广泛,所有涉及中点、三等分点及n等分点的问题都可以据此来求.中点坐标公式的作用很大.在角平分线、点关于点的对称点、点关于线的对称点、直线关于点的对称直线、直线关于直线的对称直线等对称问题中都有中点出现,物理中的影像问题也有中点出现.5.探索平面上两点间距离公式时需要注意什么?剖析:平面上两点间距离公式的探索,应该从在数轴上的两点或连线平行轴的两点入手,然后注意研究怎样把两点连线(不平行轴的情况)向上面的简单情况转化.探索中要注意观察或构造直角三角形,以便应用勾股定理.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3