1、A组考点基础演练一、选择题1设acos 6sin 6,b2sin 13cos 13,c,则有()AabcBabcCbca Dacb解析:asin 24,bsin 26,csin 25,sin 24sin 25sin 26,acb.答案:D2tan 15()A2 B2C4 D.解析:解法一tan 154.解法二tan 154.答案:C3若,则sin cos 的值为()A BC. D.解析:2cos2(sin cos ).所以sin cos .答案:C4函数f(x)sin xcos的值域为()A2,2 B,C1,1 D.解析:f(x)sin xcossin xcos xcossin xsinsin
2、 xcos xsin xsin(xR),f(x)的值域为,答案:B5已知f(x)2tan x,则f的值为()A4 B.C4 D8解析:f(x)222,f8.答案:D二、填空题6函数f(x)sin2的最小正周期是_解析:f(x)sin2sin 4x,最小正周期T.答案:7已知是第三象限角,且sin ,则tan_.解析:是第三象限角且sin ,cos ,tan.答案:8已知cos,则cos xcos的值是_解析:cos xcoscos xcos xsin xcos xsin xcos1.答案:1三、解答题9(2014年珠海区综合测试)已知函数f(x)coscos2sin xcos x.(1)求f(
3、x)的最小正周期;(2)求函数f(x)在区间上的最大值和最小值,并求此时x的值解析:(1)f(x)coscos2sin xcos xcos 2xcossin 2xsincos 2xcossin 2xsin2sin xcos x2cos 2xsin 2xcos 2xsin 2x222sin,f(x)的最小正周期为T.(2)由(1)知f(x)2sin,由x,得2x,当2x,即x时,f(x)取得最大值2;当2x,即x时,f(x)取得最小值.10(2015年沈阳质检)已知函数f(x)sin xcos x2,记函数f(x)的最小正周期为,向量a(2,cos ),b,且ab.(1)求f(x)在区间上的最值
4、;(2)求的值解析:(1)f(x)sin xcos x22sin2,x,x,f(x)的最大值是4,最小值是2.(2)2,ab2cos tan()2sin ,sin ,2cos 2.B组高考题型专练1若,sin 2,则sin ()A. B. C. D.解析:,2,故cos 20.cos 2.又cos 212sin2,sin2.sin ,故选D.答案:D2(2013年高考新课标全国卷)已知sin 2,则cos2()A. B. C. D.解析:sin 2,cos2.答案:A3计算的值为_解析:1.答案:14若sin(),且,则sin_.解析:sin()sin ,又,cos .由cos 2cos21,得cos,所以sincos.答案: