1、1两角和与差的余弦、正弦、正切公式cos()cos cos sin sin ,(C()cos()cos cos sin sin ,(C()sin()sin cos cos sin ,(S()sin()sin cos cos sin ,(S()tan(),(T()tan().(T()2二倍角公式sin 22sin cos ;cos 2cos2sin22cos2112sin2;tan 2.【知识拓展】1降幂公式:cos2,sin2.2升幂公式:1cos 22cos2,1cos 22sin2.3辅助角公式:asin xbcos xsin(x),其中sin ,cos .【思考辨析】判断下列结论是否正确
2、(请在括号中打“”或“”)(1)存在实数,使等式sin()sin sin 成立()(2)在锐角ABC中,sin Asin B和cos Acos B大小不确定()(3)若45,则tan tan 1tan tan .()(4)对任意角都有1sin (sin cos )2.()(5)y3sin x4cos x的最大值是7.()(6)在非直角三角形中,tan Atan Btan Ctan Atan Btan C()1(教材改编)sin 18cos 27cos 18sin 27的值是()A. B.C. D答案A解析sin 18cos 27cos 18sin 27sin(1827)sin 45.2化简等于
3、()A1 B. C. D2答案C解析原式.3若,则tan 2等于()A B. C D.答案B解析由,等式左边分子、分母同除cos ,得,解得tan 3,则tan 2.4tan 20tan 40tan 20tan 40 .答案解析tan 60tan(2040),tan 20tan 40tan 60(1tan 20tan 40)tan 20tan 40,原式tan 20tan 40tan 20tan 40.5(2016浙江)已知2cos2xsin 2xAsin(x)b(A0),则A ,b .答案1解析2cos2xsin 2xcos 2x1sin 2x1sin1Asin(x)b(A0),A,b1.第
4、1课时两角和与差的正弦、余弦和正切公式题型一和差公式的直接应用例1(1)(2016广州模拟)已知sin ,(,),则 .(2)在ABC中,若tan Atan Btan Atan B1,则cos C的值为()A B.C. D答案(1)(2)B解析(1)cos sin ,sin ,(,),cos ,原式.(2)由tan Atan Btan Atan B1,可得1,即tan(AB)1,又AB(0,),所以AB,则C,cos C.思维升华(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征(2)使用公式求值,应先求出相关角的函数值,再代入公式求值(1)(2016全国丙卷)若tan ,则cos2
5、2sin 2等于()A. B. C1 D.(2)计算的值为()A B.C. D答案(1)A(2)B解析(1)tan ,则cos22sin 2.(2).题型二和差公式的综合应用命题点1角的变换例2(1)设、都是锐角,且cos ,sin(),则cos 等于()A. B.C.或 D.或(2)已知cos()sin ,则sin()的值是 答案(1)A(2)解析(1)依题意得sin ,cos().又,均为锐角,所以0cos()因为,所以cos().于是cos cos()cos()cos sin()sin .(2)cos()sin ,cos sin ,(cos sin ),sin(),sin(),sin()
6、sin().思维升华(1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”(2)常见的配角技巧:2()(),(),()()等命题点2三角函数式的变形例3(1)化简: (0);(2)求值:sin 10(tan 5)解(1)由(0,),得00,2cos .又(1sin cos )(sin cos )(2sin cos 2cos2)(sin cos )2cos (sin2cos2)2cos cos .故原式
7、cos .(2)原式sin 10()sin 10sin 102cos 10.引申探究化简: (0)解00,(,),sin().sin(2)sin2()sin 2()cos cos 2()sin sin()cos()2cos2()12()21.(2)3,故选C.答案(1)(2)C1(2015课标全国)sin 20cos 10cos 160sin 10等于()A B. C D.答案D解析sin 20cos 10cos 160sin 10sin 20cos 10cos 20sin 10sin(2010)sin 30.2(2016全国甲卷)若cos,则sin 2等于()A. B. C D答案D解析因为
8、sin 2cos2cos21,又因为cos,所以sin 221,故选D.3已知sin 2,则cos2等于()A. B.C. D.答案A解析因为cos2,所以cos2,故选A.4(2016东北三省三校联考)已知sin cos ,则sin2()等于()A. B.C. D.答案B解析由sin cos ,两边平方得1sin 2,解得sin 2,所以sin2().5.的值是()A. B.C. D.答案C解析原式.6(2016江西九校联考)已知锐角,满足sin cos ,tan tan tan tan ,则,的大小关系是()A BC. D.0,.又tan tan tan tan ,tan(),又,.7化简
9、 .答案解析原式tan(902).8已知tan()3,则sin 22cos2的值为 答案解析tan()3,3,解得tan .sin 22cos2sin 2cos 21111.9已知sin()cos cos()sin ,是第三象限角,则sin() .答案解析依题意可将已知条件变形为sin()sin ,sin .又是第三象限角,因此有cos .sin()sin()sin cos cos sin .*10.(2016宝鸡模拟)已知cos()cos(),则sin4cos4的值为 答案解析因为cos()cos()(cos sin )(cos sin )(cos2sin2)cos 2.所以cos 2.故s
10、in4cos4()2()2.11已知(0,),tan ,求tan 2和sin(2)的值解tan ,tan 2,且,即cos 2sin ,又sin2cos21,5sin21,而(0,),sin ,cos .sin 22sin cos 2,cos 2cos2sin2,sin(2)sin 2cos cos 2sin .12已知,且sin cos .(1)求cos 的值;(2)若sin(),求cos 的值解(1)因为sin cos ,两边同时平方,得sin .又,所以cos .(2)因为,所以,故.又sin(),得cos().cos cos()cos cos()sin sin().*13.(2017合肥质检)已知cos()cos(),(,)(1)求sin 2的值;(2)求tan 的值解(1)cos()cos()cos()sin()sin(2),即sin(2).(,),2(,),cos(2),sin 2sin(2)sin(2)cos cos(2)sin .(2)(,),2(,),又由(1)知sin 2,cos 2.tan 22.