收藏 分享(赏)

2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc

上传人:高**** 文档编号:1454723 上传时间:2024-06-07 格式:DOC 页数:20 大小:313KB
下载 相关 举报
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第1页
第1页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第2页
第2页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第3页
第3页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第4页
第4页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第5页
第5页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第6页
第6页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第7页
第7页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第8页
第8页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第9页
第9页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第10页
第10页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第11页
第11页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第12页
第12页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第13页
第13页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第14页
第14页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第15页
第15页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第16页
第16页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第17页
第17页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第18页
第18页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第19页
第19页 / 共20页
2017年高考数学(全国乙卷(理科)考前抢分必做:压轴大题突破练(二) WORD版含答案.doc_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
资源描述

1、压轴大题突破练(二)直线与圆锥曲线(2)1.(2016浙江)如图,设椭圆y21(a1).(1)求直线ykx1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解(1)设直线ykx1被椭圆截得的线段为AM,由得(1a2k2)x22a2kx0,故x10,x2,因此|AM|x1x2|.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k20,k1k2.由(1)知,|AP|,|AQ|,故,所以(kk)1kka2(2a2)kk0.由

2、于k1k2,k1,k20得1kka2(2a2)kk0,因此1a2(a22).因为式关于k1,k2的方程有解的充要条件是1a2(a22)1,所以a.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a,由e,得00)交于A,B两点,且3,其中O为坐标原点.(1)求p的值;(2)当|AM|4|BM|最小时,求直线l的方程.解(1)设A(x1,y1),B(x2,y2),直线l的方程为xmy.联立消去x,得y22pmyp20.y1y22pm,y1y2p2.3,x1x2y1y23.又x1x2,p23p24.p0,p2.(2)由抛物线定义,得|AM|x1x11,|BM|x2x21,|

3、AM|4|BM|x14x25259,当且仅当x14x2时取等号.将x14x2代入x1x21,得x2(负值舍去).将x2代入y24x,得y2,即点B.将点B代入xmy1,得m.直线l的方程为xy1,即4xy40.3.已知动点S(x,y)到直线l:x2的距离是它到点T(,0)的距离的倍.(1)求动点S的轨迹C的方程;(2)设轨迹C上一动点P满足:2,其中M,N是轨迹C上的点,直线OM与ON的斜率之积为,若Q(,)为一动点,E1(,0),E2(,0)为两定点,求|QE1|QE2|的值.解 (1) 点S(x,y)到直线x2的距离,是到点T(,0)的距离的倍,则|x2|,化简得1.所以轨迹C的方程为1.

4、(2)设P(x,y),M(x1,y1),N(x2,y2),则2,即xx12x2,yy12y2,因为点P,M,N在椭圆1上,所以x2y4,x2y4,x22y24,故x22y22(x2y)42(x2y)4(x1x22y1y2)421624(x1x22y1y2)4,设kOM,kON分别为直线OM,ON的斜率,由题意知,kOMkON,因此x1x22y1y20,所以2421,所以点Q是椭圆2421上的点,而E1,E2恰为该椭圆的左,右焦点,所以由椭圆的定义可得,|QE1|QE2|2.4.已知曲线C上任意一点P到两定点F1(1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴

5、负半轴交点为A,过点M(4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.证明:kkON为定值;是否存在实数k,使得F1NAC?如果存在,求直线l的方程,如果不存在,请说明理由.(1)解由已知可得:曲线C是以两定点F1(1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以a2,c1b,故曲线C的方程为1.(2)证明设过点M的直线l的方程为yk(x4),设B(x1,y1),C(x2,y2)(x2x1).联立方程组得(4k23)x232k2x64k2120,则故xN,yNk(xN4).所以kON,所以kkON为定值.解若F1NAC,则kACkF1N1,因为F1(1,

6、0),kF1N,因为A(2,0),kAC,故1,代入y2k(x24)得x228k2,y22k8k3,而x22,故只能k0,显然不成立,所以这样的直线不存在.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合M=0,1,2,N=x,若MN=0,1,2,3,则x的值为()A3B2C1D02如图是一个几何体的三视图,则该几何体为()A球B圆柱C圆台D圆锥3在区间0,5内任取一个实数,则此数大于3的概率为()ABCD4某程序框图如图所示,若输入x的值为1,则输出y的值是

7、()A2B3C4D55已知向量=(1,2),=(x,4),若,则实数x的值为()A8B2C2D86某学校高一、高二、高三年级的学生人数分别为600,400,800为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A15,5,25B15,15,15C10,5,30D15,10,207如图,在正方体ABCDA1B1C1D1中,直线BD与A1C1的位置关系是()A平行B相交C异面但不垂直D异面且垂直8不等式(x+1)(x2)0的解集为()Ax|1x2Bx|1x2Cx|x2或x1Dx|x2或x19已知两点P(4,0),Q(0,

8、2),则以线段PQ为直径的圆的方程是()A(x+2)2+(y+1)2=5B(x2)2+(y1)2=10C(x2)2+(y1)2=5D(x+2)2+(y+1)2=1010如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且ACB=120,则A、B两点间的距离为()A kmB kmC1.5kmD2km二、填空题:本大题共5小题,每小题4分,满分20分11计算:log21+log24=12已知1,x,9成等比数列,则实数x=13已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是14已知a是函数f(x)=2log

9、2x的零点,则a的值为15如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角AEFC(如图2),则在图2中直线AF与平面EBCF所成的角的大小为三、解答题:本大题共5小题,满分40分解答应写出文字说明、证明过程或演算步骤16已知,(1) 求tan;(2) 求的值17某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清 (1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员

10、早餐日平均费用不少于8元?18已知等比数列an的公比q=2,且a2,a3+1,a4成等差数列(1)求a1及an;(2)设bn=an+n,求数列bn的前5项和S519已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x2,2的最大值和最小值20已知圆C:x2+y2+2x3=0(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使CDE的面积最大2016-2017学年湖南省衡阳市衡阳县

11、四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合M=0,1,2,N=x,若MN=0,1,2,3,则x的值为()A3B2C1D0【考点】并集及其运算【分析】根据M及M与N的并集,求出x的值,确定出N即可【解答】解:集合M=0,1,2,N=x,且MN=0,1,2,3,x=3,故选:A2如图是一个几何体的三视图,则该几何体为()A球B圆柱C圆台D圆锥【考点】由三视图求面积、体积【分析】由三视图可知该几何体为圆锥【解答】解:根据三视图可知,该几何体为圆锥故选D3在区间0,5内任取一个实数,

12、则此数大于3的概率为()ABCD【考点】几何概型【分析】由题意,要使此数大于3,只要在区间(3,5上取即可,利用区间长度的比求【解答】解:要使此数大于3,只要在区间(3,5上取即可,由几何概型的个数得到此数大于3的概率为为;故选B4某程序框图如图所示,若输入x的值为1,则输出y的值是()A2B3C4D5【考点】程序框图【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=11+3=3,输出y的值为3故选:B5已知向量=(1,2),=(x,4),若,则实数x的值为()A8B2C2D8【考点】平面向量共线(平行)的坐标表示【分析】根据

13、向量平行的坐标公式建立方程进行求解即可【解答】解:,42x=0,得x=2,故选:B6某学校高一、高二、高三年级的学生人数分别为600,400,800为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A15,5,25B15,15,15C10,5,30D15,10,20【考点】分层抽样方法【分析】根据分层抽样的定义,建立比例关系即可等到结论【解答】解:高一、高二、高三年级的学生人数分别为600,400,800从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:451510=20故选:D

14、7如图,在正方体ABCDA1B1C1D1中,直线BD与A1C1的位置关系是()A平行B相交C异面但不垂直D异面且垂直【考点】空间中直线与直线之间的位置关系【分析】连接AC,则ACA1C1,ACBD,即可得出结论【解答】解:正方体的对面平行,直线BD与A1C1异面,连接AC,则ACA1C1,ACBD,直线BD与A1C1垂直,直线BD与A1C1异面且垂直,故选:D8不等式(x+1)(x2)0的解集为()Ax|1x2Bx|1x2Cx|x2或x1Dx|x2或x1【考点】一元二次不等式的解法【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集【解答】解:不等式(x+1)(x2)0对应方程的两

15、个实数根为1和2,所以该不等式的解集为x|1x2故选:A9已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A(x+2)2+(y+1)2=5B(x2)2+(y1)2=10C(x2)2+(y1)2=5D(x+2)2+(y+1)2=10【考点】圆的标准方程【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可【解答】解:圆的直径为线段PQ,圆心坐标为(2,1)半径r=圆的方程为(x2)2+(y1)2=5故选:C10如图,在高速公路建设中需要确定隧道的

16、长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且ACB=120,则A、B两点间的距离为()A kmB kmC1.5kmD2km【考点】解三角形的实际应用【分析】直接利用与余弦定理求出AB的数值【解答】解:根据余弦定理 AB2=a2+b22abcosC,AB=(km)故选:A二、填空题:本大题共5小题,每小题4分,满分20分11计算:log21+log24=2【考点】对数的运算性质【分析】直接利用对数的运算法则化简求解即可【解答】解:log21+log24=0+log222=2故答案为:212已知1,x,9成等比数列,则实数x=3【考点】等比数列【分析】由等比数列的

17、性质得x2=9,由此能求出实数x【解答】解:1,x,9成等比数列,x2=9,解得x=3故答案为:313已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5【考点】简单线性规划【分析】利用目标函数的几何意义求最大值即可【解答】解:由已知,目标函数变形为y=x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:514已知a是函数f(x)=2log2x的零点,则a的值为4【考点】函数的零点【分析】根据函数零点的定义,得f(a)=0,从而求出a的值【解答】解:a是函数f(x)=2log2x的零点,f(a)=2log2a=

18、0,log2a=2,解得a=4故答案为:415如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角AEFC(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45【考点】直线与平面所成的角【分析】由题意,AE平面EFBC,AFE是直线AF与平面EBCF所成的角,即可得出结论【解答】解:由题意,AE平面EFBC,AFE是直线AF与平面EBCF所成的角,AE=EF,AFE=45故答案为45三、解答题:本大题共5小题,满分40分解答应写出文字说明、证明过程或演算步骤16已知,(1) 求tan;(2) 求的值【考点】三角函数的化简求值【分析

19、】(1)由,结合同角平方关系可求cos,利用同角基本关系可求(2)结合(1)可知tan的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2,然后把已知tan的值代入可求【解答】解:(1)sin2+cos2=1,cos2=又,cos=(2)=17某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清 (1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布

20、直方图【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:2=200,18已知等比数列an的公比q=2,且a2,a3+1,a4成等差数列(1)求a1及an;(2)设bn=an+n,求数列bn的前5项和S5【考点】数列的求和;等比数列的通项公式【分析】(1)运用等比数列

21、的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得bn=2n1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故an=a1qn1=2n1;(2)因为bn=2n1+n,所以S5=b1+b2+b3+b4+b5=(1+2+16)+(1+2+5)=+=31+15=4619已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(

22、1)求函数f(x)解析式(2)求函数f(x)在x2,2的最大值和最小值【考点】二次函数的性质;二次函数在闭区间上的最值【分析】(1)利用已知条件列出方程组求解即可(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可【解答】解:(1);(2)f(x)=x22x+6=(x1)2+5,x2,2,开口向上,对称轴为:x=1,x=1时,f(x)的最小值为5,x=2时,f(x)的最大值为1420已知圆C:x2+y2+2x3=0(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的

23、直线m与圆C相交于D、E两点,求直线m的方程,使CDE的面积最大【考点】直线与圆的位置关系【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CDCE时CDE的面积最大,再利用点到直线的距离求出对应直线m的方程【解答】解:(1)圆C:x2+y2+2x3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,当且仅当,即时,CDE的面积最大,从而,解之得b=3或b=1,故所求直线方程为xy+3=0或xy1=0解法二:由(1)知|CD|=|CE|=R=2,所以2,当且仅当CDCE时,CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=1,故所求直线方程为xy+3=0或xy1=02017年5月5日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3