ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:199KB ,
资源ID:145148      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-145148-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年数学同步优化指导(湘教版选修1-2)练习:4-3 列联表独立性分析案例 活页作业3 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年数学同步优化指导(湘教版选修1-2)练习:4-3 列联表独立性分析案例 活页作业3 WORD版含解析.doc

1、活页作业(三)列联表独立性分析案例1对于分类变量X与Y的统计量2的值说法正确的是()A2越大,“X与Y有关系”的把握性越小B2越小,“X与Y有关系”的把握性越小C2越接近于0,“X与Y无关系”的把握性越小D2越接近于0,“X与Y无关系”的把握性越大解析2越大,X与Y越不独立,所以关联越大;相反,2越小,关联越小答案:B2在22列联表中,两个比值_相差越大,两个分类变量之间的关系越强()A与B与C与 D与解析与相差越大,说明ad与bc相差越大,两个分类变量之间的关系越强答案:A3对两个分类变量进行独立性检验的主要作用是()A判断模型的拟合效果B对两个变量进行相关分析C给出两个分类变量有关系的可靠

2、程度D估计预报变量的平均值解析独立性检验的目的就是明确两个分类变量有关系的可靠程度答案:C4为了了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机选取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据计算得到29.643,根据临界值表,以下说法正确的是(已知当27.879时,有99.5%的把握判定两个变量有关联)()A没有充足的理由认为课外阅读量大与作文成绩优秀有关B有0.5%的把握认为课外阅读量大与作文成绩优秀有关C有99.9%的把握认为课外阅读量大与作文成绩优秀有关D有99.5%的把握认

3、为课外阅读量大与作文成绩优秀有关解析29.6437.879,P(29.6437.879)0.005.在犯错误的概率不超过0.005的前提下认为作文成绩优秀与课外阅读量大有关答案:D5已知某校文理科教师与性别的列联表如下:文理性别理科文科总计男3785122女35143178总计72228300由表中的数据计算2的值约为_.(精确到0.000 1)解析24.513 9.答案:4.513 96为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用22列联表进行独立性检验,经计算28.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为_.解析28.016.635,有99%的把握

4、说学生性别与喜欢乡村音乐有关系答案:99%7某次全国性会议在北京召开为了做好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语(1)根据以上数据完成以下22列联表:会俄语不会俄语总计男女总计30(2)能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?解(1)对应的22列联表如下:会俄语不会俄语总计男10616女6814总计161430(2)假设:是否会俄语与性别无关,由已知数据得21.157 52.706.不能在犯错的概率不超过0.10的前提下认为性别与会俄语有关8某校对高三部分学生的数学质检成绩作相对分析(1)按一定

5、比例进行分层抽样抽取了20名学生的数学成绩,并用茎叶图(图1)记录,但部分数据不小心丢失了,已知数学成绩70,90)的频率是0.2,请补全表格并绘制相应频率分布直方图(图2)分数段(分)50,70)70,90)90,110)110,130)130,150频率(2)为了考察学生的物理成绩与数学成绩是否有关系,抽取了部分同学的数学成绩与物理成绩进行比较,得到统计数据如下表:物理成绩优秀物理成绩一般合计数学成绩优秀15318数学成绩一般51722合计202040能够有多大的把握认为物理成绩优秀与数学成绩优秀有关系?(已知当210.828时,有99.9%的把握判定两个变量有关联)解(1)填表如下:分数

6、段(分)50,70)70,90)90,110)110,130)130,150频率0.10.20.40.20.1画图如下:(2)假设学生的物理成绩优秀与数学成绩优秀没有关系,则214. 5510.828.有99.9%的把握认为物理成绩优秀与数学成绩优秀有关系1两个分类变量X和Y的值域分别为x1,x2和y1,y2,其样本频数分别是a10,b21,cd35.若X与Y有关系的可信程度不小于97.5%,则c等于(已知当25.024时,则有97.5%的把握认为变量X与Y有关系)()A3B4C5D6解析25.024,把选项A,B,C,D代入验证可知选A答案:A2在打鼾与患心脏病之间的关系研究中,通过收集数据

7、、整理分析数据得“打鼾与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的下列说法中正确的是()A100个心脏病患者中,至少有99人打鼾B1个人患心脏病,则这个人有99%的概率打鼾C在100个心脏病患者中,一定有打鼾的人D在100个心脏病患者中,可能1个打鼾的都没有解析由题意知,“打鼾与患心脏病有关”的结论有99%以上的把握正确,而不是心脏病患者打鼾的概率为99%,故选D答案:D3独立性检验中,若两个分类变量“X和Y有关系”的可信程度是95%,则随机变量2的取值范围是_.解析当23.841时,有95%的把握判定X与Y有关系,当26.635时,有99%的把握判定X与Y有关系,3.8

8、4126.635.答案:(3.841,6.6354假设有两个分类变量X与Y,它们的可能取值分别为x1,x2和y1,y2,其中22列联表如下:y1y2总计x1ababx2cdcd总计acbdabcd下列各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为_.(填序号)a5,b4,c3,d2;a5,b3,c4,d2;a2,b3,c4,d5;a2,b3,c5,d4.解析四个选项中abcd的值与(ab)(ac)(cd)(bd)的值分别相等,则由2的计算公式,可知只需计算(adbc)2.经计算,知其值最大的一组是.答案:5某城市随机抽取一年内100天的空气质量指数API的监测数据,统计结果如下

9、表:API空气质量天数0,50优4(50,100良13(100,150轻微污染18(150,200轻度污染30(200,250中度污染9(250,300中度重污染11300重度污染15(1)某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为)的关系式为S试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面22列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关.非重度污染重度污染总计供暖季非供暖季总计100解(1)设“在本年内随机抽取一天,该天经济损失S大于

10、200元且不超过600元”为事件A,由200S600,得150250,频数为39.P(A).(2)根据已知数据得到如下列联表:非重度污染重度污染总计供暖季22830非供暖季63770总计851510024.5753.841.所以有95%的把握认为空气重度污染与供暖有关6目前,在“互联网”和“大数据”浪潮的推动下,在线教育平台如雨后春笋般蓬勃发展,与此同时,很多学生家长和相关专家对在线教学也产生了质疑,主要原因就是对在线教学,学生是否能认真听讲存在疑虑在这种情况下,某市教育主管部门在该市各中小学采用分层抽样的方式抽出15周岁以下和15周岁以上各200人进行调查研究,其中15周岁以下的能认真听讲的

11、有150人,不能做到认真听讲的有50人,15周岁以上的170人能认真听讲,不能做到认真听讲的有30人(1)完成下列22列联表:不认真听讲能认真听讲总计15周岁以下15周岁以上总计(2)请说明是否有97.5%的把握认为能否认真听讲与年龄有关(已知当25.024时,有97.5%的把握判定两个变量有关联)(3)现用分层抽样的方法,从15周岁以下的人中抽取8人,在这8人中任取2人进行座谈,求抽到的人中至少有1人能认真听讲的概率解(1)填表如下:不认真听讲能认真听讲总计15周岁以下5015020015周岁以上30170200总计80320400(2)根据题中的数据计算,得26.25.因为6.255.02

12、4,所以有97.5%的把握认为能否认真听讲与年龄有关(3)由题意可知,从15周岁以下抽8人,其中能认真听讲的为6人,不能认真听讲的为2人设能认真听讲的人为a1,a2,a3,a4,a5,a6,不能认真听讲的人为b1,b2,于是,在8人中任意抽取2人有(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,a6),(a2,a3),(a2,a4),(a2,a5),(a2,a6),(a3,a4),(a3,a5),(a3,a6),(a4,a5),(a4,a6),(a5,a6),(b1,a1)(b1,a2),(b1,a3),(b1,a4)(b1,a5),(b1,a6),(b2,a1),(b2,a2)(b2,a3),(b2,a4),(b2,a5),(b2,a6),(b1,b2)共28种,其中,至少有1人能认真听讲的对立事件是2人都不能认真听讲,只有(b1,b2)一种情况于是,设事件A“至少有一人认真听讲”,则P(A)1P().

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3