ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:637.78KB ,
资源ID:145049      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-145049-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(冀教版九下数学30.4第2课时实际问题中二次函数的最值问题教案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

冀教版九下数学30.4第2课时实际问题中二次函数的最值问题教案.docx

1、第2课时 实际问题中二次函数的最值问题1经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系2会运用二次函数求实际问题中的最大值或最小值3能应用二次函数的性质解决图形最大面积、利润最大问题一、情境导入孙大爷要围成一个矩形花圃花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米当x为何值时,S有最大值?并求出最大值二、合作探究探究点一:最大面积问题【类型一】利用二次函数求最大面积 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化(1)求

2、S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标解:(1)根据题意,得Sxx230x.自变量x的取值范围是0x30.(2)Sx230x(x15)2225,a10,S有最大值,即当x15(米)时,S最大值225平方米方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系【类型二】最大面积方案设计 施工队

3、要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示)(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下解:(1)M(12,0),P(6,6)(2)设这条抛物线的函数关系式为ya(x6)26,因为抛物线过O(0,0),所以a(06)260,解得,a,所以这条抛物线的函数关系式为:y(x6)26,即yx2

4、2x.(3)设OBm米,则点A的坐标为(m,m22m),所以ABDCm22m.根据抛物线的轴对称,可得OBCMm,所以BC122m,即AD122m,所以lABADDCm22m122mm22mm22m12(m3)215.所以当m3,即OB3米时,三根木杆长度之和l的最大值为15米探究点二:最大利润问题【类型一】利用解析式确定获利最大的条件 为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件生产该

5、产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润一天生产的产品件数每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议解:设该厂生产第x档的产品一天的总利润为y元,则有y102(x1)764(x1)8x2128x6408(x8)21152.当x8时,y最大值1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大建议:若想获得最大利润,应生产

6、第8档次的产品(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2mx28mxn,其变化趋势如图所示(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y2的图象经过两点(3,6),(7,7),解得y2的解析式为y2x2x(1x12)(2)设y1kxb,函数y1的图象过两点(4,11),(8,10),解得y1的解析式为y1x12(1x12)设这种水果每千克所获得的利润为w元则wy1y2(x12)(x2x)x2x,w(x3)2(1x12),当x3时,w取最大值,第3月销售这种水果,每千克所获的利润最大,最大利润是元/千克三、板书设计实际问题中二次函数的最值问题:(1)几何图形最大面积问题;(2)商品利润最大问题.教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况,培养学生将实际问题转化为函数问题并利用函数的性质进行决策的能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3