ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:100KB ,
资源ID:144702      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-144702-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年大一轮数学(理)高考复习(人教)规范训练《第八章 平面解析几何》8-4 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年大一轮数学(理)高考复习(人教)规范训练《第八章 平面解析几何》8-4 WORD版含答案.doc

1、课时规范训练A组基础演练1对任意的实数k,直线ykx1与圆x2y22的位置关系一定是()A相离B相切C相交但直线不过圆心 D相交且直线过圆心解析:选C.x2y22的圆心(0,0)到直线ykx1的距离d1,又r,0dr.直线与圆相交但直线不过圆心2直线x2y50被圆x2y22x4y0截得的弦长为()A1 B2C4 D4解析:选C.圆的方程可化为(x1)2(y2)25,圆心(1,2)到直线x2y50的距离d1,截得弦长l24.3若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21 B19C9 D11解析:选C.圆C2的标准方程为 (x3)2(y4)225m.又圆C1:x2y21,

2、|C1C2|5.又两圆外切,51,解得m9.4已知过点P(2,2)的直线与圆(x1)2y25相切,且与直线axy10垂直,则a()A B1C2 D.解析:选C.由题意知圆心为(1,0),由圆的切线与直线axy10垂直,可设圆的切线方程为xayc0,由切线xayc0过点P(2,2),c22a,解得a2.5过点P(3,1)作圆C:(x1)2y21的两条切线,切点分别为A,B,则直线AB的方程为()A2xy30 B2xy30C4xy30 D4xy30解析:选A.如图所示:由题意知:ABPC,kPC,kAB2,直线AB的方程为y12(x1),即2xy30.6若圆x2y21与直线ykx2没有公共点,则实

3、数k的取值范围为_解析:由圆与直线没有公共点,可知圆的圆心到直线的距离大于半径,也就是1,解得k,即k(,)答案:(,)7已知点P(2,3),圆C:(x4)2(y2)29,过P点作圆C的两条切线,切点分别为A,B,过P,A,C三点的圆的方程为_解析:圆C的圆心C(4,2),PAAC,PBBC,P,A,B,C四点共圆,所求圆的圆心O在PC的中点,即O,所求圆的半径r,过P,A,B三点的圆的方程为(x1)22.答案:(x1)228已知两圆C1:x2y22x10y240,C2:x2y22x2y80,则以两圆公共弦为直径的圆的方程是_解析:圆C1的圆心为(1,5),半径为,圆C2的圆心为(1,1),半

4、径为,则两圆心连线的直线方程为2xy30,由两圆方程作差得公共弦方程为x2y40,两直线的交点(2,1)即为所求圆的圆心,由垂径定理可以求得半径为,即所求圆的方程为(x2)2(y1)25.答案:(x2)2(y1)259已知点M(3,1),直线axy40及圆(x1)2(y2)24.(1)求过M点的圆的切线方程;(2)若直线axy40与圆相切,求a的值;(3)若直线axy40与圆相交于A,B两点,且弦AB的长为2,求a的值解:(1)圆心C(1,2),半径r2,当直线的斜率不存在时,方程为x3.由圆心C(1,2)到直线x3的距离d312r知,此时,直线与圆相切当直线的斜率存在时,设方程为y1k(x3

5、),即kxy13k0.由题意知2,解得k.圆的切线方程为y1(x3),即3x4y50.故过M点的圆的切线方程为x3或3x4y50.(2)由题意得2,解得a0或a.(3)圆心到直线axy40的距离为,224,解得a.10已知直线l:ykx1,圆C:(x1)2(y1)212.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长解:法一:(1)证明:由消去y得(k21)x2(24k)x70,因为(24k)228(k21)0,所以不论k为何实数,直线l和圆C总有两个交点(2)设直线与圆交于A(x1,y1)、B(x2,y2)两点,则直线l被圆C截得的弦长|AB|x1

6、x2|22 ,令t,则tk24k(t3)0,当t0时,k,当t0时,因为kR,所以164t(t3)0,解得1t4,且t0,故t的最大值为4,此时弦长|AB|最小为2.法二:(1)证明:因为不论k为何实数,直线l总过点P(0,1),而|PC|2R,所以点P(0,1)在圆C的内部,即不论k为何实数,直线l总经过圆C内部的定点P.所以不论k为何实数,直线l和圆C总有两个交点(2)由平面几何知识知过圆内定点P(0,1)的弦,只有和AC(C为圆心)垂直时才最短,而此时点P(0,1)为弦AB的中点,由勾股定理,知|AB|22,即直线l被圆C截得的最短弦长为2.B组能力突破1已知直线ykxb与圆O:x2y2

7、1相交于A,B两点,当b 时,等于()A1B2C3 D4解析:选A.设A(x1,y1),B(x2,y2),将ykxb代入x2y21得(1k2)x22kbxb210,故x1x2,x1x2,从而x1x2y1y2(1k2)x1x2kb(x1x2)b2b21b211.2圆心在直线xy0上且过两圆x2y22x0,x2y22y0的交点的圆的方程为()Ax2y2xy0Bx2y2xy0Cx2y2xy0Dx2y2xy0解析:选C.设所求圆的方程为x2y22x(x2y22y)0(1),即x2y2xy0,圆心坐标为.又圆心在直线xy0上,0,1,所求圆的方程为x2y2xy0,故选C.3设两圆C1、C2都和两坐标轴相

8、切,且都过点(4,1),则两圆心的距离|C1C2|等于()A4 B4C8 D8解析:选C.由题意易知圆心在直线yx上,设圆的方程为(xa)2(ya)2a2,由于圆过点(4,1),所以有(4a)2(1a)2a2,解得a52或a52,因此圆心C1(52,52),C2(52,52),从而两圆心的距离|C1C2|8.故选C.4已知直线xya0与圆心为C的圆x2y22x4y40相交于A,B两点,且ACBC,则实数a的值为_解析:由x2y22x4y40得(x1)2(y2)29,所以圆C的圆心坐标为C(1,2),半径为3,由ACBC可知ABC是直角边长为3的等腰直角三角形,故可得圆心C到直线xya0的距离为

9、,由点到直线的距离公式可得,解得a0或a6.答案:0或65已知圆M:x2(y2)21,Q是x轴上的动点,QA,QB分别切圆M于A,B两点(1)若Q(1,0),求切线QA,QB的方程;(2)求四边形QAMB面积的最小值;(3)若|AB|,求直线MQ的方程解:(1)设过点Q的圆M的切线方程为xmy1,则圆心M到切线的距离为1,1,m或0,QA,QB的方程分别为3x4y30和x1.(2)MAAQ,S四边形MAQB|MA|QA|QA| .四边形QAMB面积的最小值为.(3)设AB与MQ交于P,则MPAB,MBBQ,|MP|.在RtMBQ中,|MB|2|MP|MQ|,即1|MQ|,|MQ|3,x2(y2)29.设Q(x,0),则x2229,x,Q(,0),MQ的方程为2xy20或2xy20.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3