1、高考资源网() 您身边的高考专家基础巩固题组(建议用时:45分钟)一、选择题1.椭圆1的焦距为2,则m的值等于()A.5 B.3 C.5或3 D.8解析当m4时,m41,m5;当0m4时,4m1,m3.答案C2.“2m6”是“方程1表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若1表示椭圆.则有2m6且m4.故“2mb0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,若椭圆C的中心到直线AB的距离为|F1F2|,则椭圆C的离心率e()A. B. C. D.解析设椭圆C的焦距为2c(cb0)的离心率等于,其焦点分别为A,B,C为椭圆上异于
2、长轴端点的任意一点,则在ABC中,的值等于_.解析在ABC中,由正弦定理得,因为点C在椭圆上,所以由椭圆定义知|CA|CB|2a,而|AB|2c,所以3.答案38.(2015福建卷改编)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点.若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是_.解析设椭圆的左焦点为F1,半焦距为c,连接AF1,BF1,则四边形AF1BF为平行四边形,所以|AF1|BF1|AF|BF|4.根据椭圆定义,有|AF1|AF|BF1|BF|4a,所以84a,解得a2.因为点M到直线l:3x4y0的距离不
3、小于,即,b1,所以b21,所以a2c21,4c21,解得0c,所以0,所以椭圆的离心率的取值范围为.答案三、解答题9.如图所示,已知椭圆1(ab0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若F1AB90,求椭圆的离心率;(2)若椭圆的焦距为2,且2,求椭圆的方程.解(1)|AF1|AF2|a,且F1AF290,|F1F2|2c,2a24c2,ac,e.(2)由题知A(0,b),F2(1,0),设B(x,y),由2,解得x,y,代入1,得1,即1,解得a23,b2a2c22.所以椭圆方程为1.10.(2014新课标全国卷)设F1,F2分别是椭圆C
4、:1(ab0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解(1)根据c及题设知M,2b23ac.将b2a2c2代入2b23ac,解得或2(舍去).故C的离心率为.(2)由题意,知原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|,得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即代入C的方程,得1. 将及c代入得1.解得a7,b24a28,故a7,b
5、2 .能力提升题组(建议用时:25分钟)11.(2016汕头一模)已知椭圆1上有一点P,F1,F2是椭圆的左、右焦点,若F1PF2为直角三角形,则这样的点P有()A.3个 B.4个 C.6个 D.8个解析当PF1F2为直角时,根据椭圆的对称性知,这样的点P有2个;同理当PF2F1为直角时,这样的点P有2个;当P点为椭圆的短轴端点时,F1PF2最大,且为直角,此时这样的点P有2个.故符合要求的点P有6个.答案C12.(2016唐山模拟)椭圆C:1(ab0)的左焦点为F,若F关于直线xy0的对称点A是椭圆C上的点,则椭圆C的离心率为()A. B.C. D.1解析法一设A(m,n),则解得A,代入椭
6、圆C中,有1,b2c23a2c24a2b2,(a2c2)c23a2c24a2(a2c2),c48a2c24a40,e48e240,e242,0eb0),由题意得解得a24,b23.故椭圆C的方程为1.(2)假设存在直线l1且由题意得斜率存在,设满足条件的方程为yk1(x2)1,代入椭圆C的方程得,(34k)x28k1(2k11)x16k16k180.因为直线l1与椭圆C相交于不同的两点A,B,设A,B两点的坐标分别为(x1,y1),(x2,y2),所以8k1(2k11)24(34k)(16k16k18)32(6k13)0,所以k1.又x1x2,x1x2,因为2,即(x12)(x22)(y11)(y21),所以(x12)(x22)(1k)2.即x1x22(x1x2)4(1k).所以24(1k),解得k1.因为k1,所以k1.于是存在直线l1满足条件,其方程为yx.- 7 - 版权所有高考资源网