ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:261.89KB ,
资源ID:1431244      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1431244-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学二轮复习 思想方法训练3 数形结合思想 文(含解析).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学二轮复习 思想方法训练3 数形结合思想 文(含解析).docx

1、思想方法训练3数形结合思想一、能力突破训练1.已知i为虚数单位,如果图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数z1+i对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限2.设全集U=x|x8,xN*,若AU,BU,B(UA)=2,6,A(UB)=1,8,(UA)(UB)=4,7,则()A.A=1,6,B=2,8B.A=1,3,5,6,B=2,3,5,8C.A=1,6,B=2,3,5,8D.A=1,3,5,8,B=2,3,5,63.若变量x,y满足x-y+10,y1,x-1,则(x-2)2+y2的最小值为()A.322B.5C.92D.54.若函数f

2、(x)=(a-x)|x-3a|(a0)在区间(-,b上取得最小值3-4a时所对应的x的值恰有两个,则实数b的值等于()A.22B.2-2或6-32C.632D.2+2或6+325.已知函数f(x)=4x与g(x)=x3+t,若f(x)与g(x)图象的交点在直线y=x的两侧,则实数t的取值范围是()A.(-6,0B.(-6,6)C.(4,+)D.(-4,4)6.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为3,向量b满足b2-4eb+3=0,则|a-b|的最小值是()A.3-1B.3+1C.2D.2-37.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只

3、有一个交点,则a的值为.8.函数f(x)=2sin xsinx+2-x2的零点个数为.9.若不等式9-x2k(x+2)-2的解集为区间a,b,且b-a=2,则k=.10.如图,ABC是等腰直角三角形,斜边AB=2,D为直角边BC上一点(不含端点).将ACD沿直线AD折叠至AC1D的位置,使得点C1在平面ABD外.若点C1在平面ABD上的射影H恰好在线段AB上,则AH的取值范围是.11.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长/min广告播放时长/min收视人次/万甲70560乙6

4、0525已知电视台每周安排的甲、乙两套连续剧的总播放时间不多于600 min,广告的总播放时间不少于30 min,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?二、思维提升训练12.已知函数f(x)=2-|x|,x2,(x-2)2,x2,函数g(x)=b-f(2-x),其中bR,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.74,+B.-,74C.0,74D.74,213.设函数f(

5、x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0使得f(x0)0,则a的取值范围是()A.-32e,1B.-32e,34C.32e,34D.32e,114.在锐角三角形ABC中,B=60,|AB-AC|=2,则ABAC的取值范围为()A.(0,12)B.-14,12C.(0,4D.(0,215.已知函数f(x)=|lgx|,010.若a,b,c互不相等,且f(a)=f(b)=f(c),求abc的取值范围.16.设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,bR),已知它们在x=1处的切线互相平行.(1)求b的值;(2)若函数F(x)=f(x),x0,g(x),

6、x0,且方程F(x)=a2有且仅有四个解,求实数a的取值范围.思想方法训练3数形结合思想一、能力突破训练1.D解析:由题图知,z=2+i,z1+i=2+i1+i=2+i1+i1-i1-i=32-12i,则对应的点位于复平面内的第四象限.故选D.2.D解析:根据题意可作出Venn图如图所示,由图可知A=1,3,5,8,B=2,3,5,6.3.D解析:如图,作出不等式组所表示的可行域(阴影部分).设z=(x-2)2+y2,则z的几何意义为可行域内的点到定点D(2,0)的距离的平方,由图象可知,C,D两点间的距离最小,此时z最小,由y=1,x-y+1=0,可得x=0,y=1,即C(0,1).所以zm

7、in=(0-2)2+12=4+1=5.4.D解析:结合函数f(x)的图象(图略)可知,3-4a=-a2,即a=1或a=3.当a=1时,-b2+4b-3=-1(b3),解得b=2+2;当a=3时,-b2+12b-27=-9(b9),解得b=6+32,故选D.5.B解析:如图,由题知,若f(x)=4x与g(x)=x3+t图象的交点位于y=x两侧,则有23+t2,(-2)3+t-2,解得-6t6.6.A解析:e为单位向量,b2-4eb+3=0,b2-4eb+4e2=1.(b-2e)2=1.以e的方向为x轴正方向,建立平面直角坐标系,如图.OE=2e,OB=b,OA=a,=3.由(b-2e)2=1,可

8、知点B在以点E为圆心,1为半径的圆上.由|a-b|=|OA-OB|=|BA|,可知|a-b|的最小值即为|BA|的最小值,即为圆上的点B到直线OA的距离.又直线OA的方程为y=3x,点E为(2,0),点E到直线OA的距离d=232=3.|BA|的最小值为3-1,即|a-b|的最小值为3-1.7.-12解析:在同一坐标系画出y=2a和y=|x-a|-1的图象如图.由图可知,要使两函数的图象只有一个交点,则2a=-1,a=-12.8.2解析:f(x)=2sinxsinx+2-x2=2sinxcosx-x2=sin2x-x2.如图,在同一平面直角坐标系中作出y=sin2x与y=x2的图象,当x0时,

9、两图象有2个交点,当x0时,两图象无交点,综上,两图象有2个交点,即函数的零点个数为2.9.2解析:令y1=9-x2,y2=k(x+2)-2,在同一平面直角坐标系中作出其图象,如图.9-x2k(x+2)-2的解集为a,b,且b-a=2,结合图象知b=3,a=1,即直线与圆的交点坐标为(1,22),k=22+21+2=2.10.(1,2)解析:在等腰直角三角形ABC中,斜边AB=2,D为直角边BC上的一点,故AC=BC=2,ACB=90.设AH=x,AC1=AC=2,CD=C1D(0,2),AC1D=90,C1H平面ABD,AHAC1=2.又CD12AB=1.AH的取值范围是(1,2).11.解

10、(1)由已知,x,y满足的数学关系式为70x+60y600,5x+5y30,x2y,x0,y0,即7x+6y60,x+y6,x-2y0,x0,y0,该二元一次不等式组所表示的平面区域为图中的阴影部分.(2)设总收视人次为z万,则目标函数为z=60x+25y.考虑z=60x+25y,将它变形为y=-125x+z25,这是斜率为-125,随z变化的一族平行直线.z25为直线在y轴上的截距,当z25取得最大值时,z的值最大.又因为(x,y)为阴影部分中的点,由图可知,当直线z=60x+25y经过可行域上的点M时,截距z25最大,即z最大.解方程组7x+6y=60,x-2y=0,得点M的坐标为(6,3

11、).所以,电视台每周播出甲连续剧6次,乙连续剧3次时才能使总收视人次最多.二、思维提升训练12.D解析:由f(x)=2-|x|,x2,(x-2)2,x2,得f(x)=2+x,x2,f(2-x)=2+2-x,2-x2=x2,x2,所以f(x)+f(2-x)=x2+x+2,x2.因为函数y=f(x)-g(x)=f(x)+f(2-x)-b恰有4个零点,所以直线y=b与函数y=f(x)+f(2-x)的图象有4个不同的交点.画出函数y=f(x)+f(2-x)的图象,如图.由图可知,当b74,2时,函数y=b与y=f(x)+f(2-x)的图象有4个不同的交点.故选D.13.D解析:设g(x)=ex(2x-

12、1),h(x)=a(x-1),则不等式f(x)0即为g(x)h(x).因为g(x)=ex(2x-1)+2ex=ex(2x+1),当x-12时,g(x)-12时,g(x)0,函数g(x)单调递增.所以g(x)的最小值为g-12.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=ex(2x-1)与h(x)=a(x-1)的大致图象.显然,当a0时,满足不等式g(x)h(x)的整数有无数多个.函数g(x)=ex(2x-1)的图象与y轴的交点为A(0,-1),与x轴的交点为D12,0.取点C-1,-3e.由图可知,不等式g(x)h(x)只有一个整数解时,须满

13、足kPCakPA.而kPC=0-3e1-(-1)=32e,kPA=0-(-1)1-0=1,所以32ea1.故选D.14.A解析:以B为原点,BA所在直线为x轴建立平面直角坐标系.B=60,|AB-AC|=|BC|=2,C(1,3).设A(x,0),ABC是锐角三角形,且A+C=120,30A90,即点A在如图所示的线段DE上(不与点D,E重合),1x4.ABAC=x2-x=x-122-14,ABAC的取值范围为(0,12).15.解因为-lga=lgbab=1,所以abc=c,也就是说只需要求出c的取值范围即可,画出函数f(x)的图象,如图所示,平移一条平行于x轴的直线,可以发现c的取值范围是

14、10c12,因此10abc12,即abc的取值范围是(10,12).16.解函数g(x)=bx2-lnx的定义域为(0,+).(1)f(x)=3ax2-3af(1)=0,g(x)=2bx-1xg(1)=2b-1,依题意2b-1=0,得b=12.(2)当x(0,1)时,g(x)=x-1x0.所以当x=1时,g(x)取得极小值g(1)=12.当a=0时,方程F(x)=a2不可能有且仅有四个解.当a0,x(-,-1)时,f(x)0,所以当x=-1时,f(x)取得极小值f(-1)=2a,又f(0)=0,所以F(x)的图象如图所示.从图象可以看出F(x)=a2不可能有四个解.当a0,x(-,-1)时,f(x)0,x(-1,0)时,f(x)0,所以当x=-1时,f(x)取得极大值f(-1)=2a.又f(0)=0,所以F(x)的图象如图所示.从图象看出方程F(x)=a2有四个解,则12a22a,所以实数a的取值范围是22,2.图图

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3