1、本作品版权由孙小明老师所有,授权予北京校园之星科技有限公司,任何机构或个人均不得擅自复制、传播。本公司热忱欢迎广大一线教师加入我们的作者队伍。有意者请登录高考资源网()版权所有,盗用必究!84双曲线的简单几何性质 (1) 一、教学目标.知识目标:使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征能力目标:在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力德育目标:培养学生乐学、爱学的学习态度二、教材分析本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质 它是教学大纲要求学生必须掌握的
2、内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分 坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学 利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比
3、讲解,主要应指出它们的联系与区别 对圆锥曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来以为渐近线的双曲线方程则是 对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律 1重点:双曲线的几何性质及初步运用(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明)2难点:双曲线的渐
4、近线方程的导出和论证(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线)三、活动设计提问、类比、重点讲解、演板、讲解并归纳、小结四、教学过程(一)复习提问引入新课1椭圆有哪些几何性质,是如何探讨的?请一同学回答应为:范围、对称性、顶点、离心率,是从标准方程探讨的2双曲线的两种标准方程是什么?再请一同学回答应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质(二)类比联想得出性质(性质13)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书)(三)问题之中导出渐近线(
5、性质4)在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON在其他象限内也可以证明类似的情况现在来看看实轴在y轴上的双曲线的渐近线方程是
6、怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字 这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较再描几个点,就可以随后画出比较精确的双曲线(四)讲解范例:例1 求双曲线的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程,并作出草图分析:只要紧扣有关概念和方法,就易解答解:把方程化为标准方程由此可知,实半轴长a1,虚半轴长b2顶点坐标是(1,0),(1,0) 焦点的坐标是(,0),(,0)渐近线方程为,即 例2 求与双曲线共渐近线且过的双曲线的方程分析:因所求的双曲线与已知双曲线共渐近线,故可先
7、设出双曲线系,再把已知点代入,求得K的值即可解:设与共渐近线且过的双曲线的方程为则 ,从而有所求双曲线的方程为(五)反馈练习1下列方程中,以x2y=0为渐近线的双曲线方程是 答案:A 2.过点(3,0)的直线与双曲线4x2-9y2=36只有一个公共点,则直线共有 (A)1条 (B)2条 (C)3条 (D)4条答案:C 翰3.若方程=1表示双曲线,其中a为负常数,则k的取值范围是( )(A)(,-) (B)(,-) (C)(-,) (D)(-,)(-,+)翰林汇答案:B 4.中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程是(A) (B)(C) (D)答案:A 5.与双
8、曲线有共同的渐近线,且一顶点为(0,9)的双曲线的方程是( ) (A) (B)(C) (D)答案:D 翰林汇6.一双曲线焦点的坐标、离心率分别为(5,0)、,则它的共轭双曲线的焦点坐标、离心率分别是 ( ) (A)(0,5), (B)(0, (C)(0, (D)(0,答案:A 7.双曲线2kx2-ky2=1的一焦点是F(0,4),则k等于 ( ) (A)-3/32 (B)3/32 (C)-3/16 (D)3/16答案:A (六)小结双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图的画法;双曲线的渐近线是,但反过来此渐近线对应的双曲线则是或写成 (七)课后作业:1已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程(1)16x2-9y2=144;(2)16x2-9y2=-1442求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程点到两准线及右焦点的距离作业答案:距离为7(八)板书设计(略)