ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:177KB ,
资源ID:1420937      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1420937-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013高考数学人教B版课后作业:8-7 圆锥曲线的综合问题(理).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013高考数学人教B版课后作业:8-7 圆锥曲线的综合问题(理).doc

1、8-7 圆锥曲线的综合问题(理) 1.(2011宁波十校联考)已知抛物线yx23上存在关于直线xy0对称的相异两点A、B,则|AB|等于() A3B4C3 D4答案C解析设A(x1,3x),B(x2,3x),由于A、B关于直线xy0对称,解得或,设直线AB的斜率为kAB,|AB|x1x2|3.故选C.2(2011南昌检测(二)过椭圆1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF260,则椭圆的离心率为()A. B.C. D.答案B解析记|F1F2|2c,则|PF1|,|PF2|,所以椭圆的离心率为,选B.3(2011长安一中、高新一中、交大附中、师大附中、西安中学一

2、模)已知双曲线x21的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为()A2 BC1 D0答案A解析由已知得A1(1,0),F2(2,0)设P(x,y)(x1),则(1x,y)(2x,y)4x2x5.令f(x)4x2x5,则f(x)在x1上单调递增,所以当x1时,函数f(x)取最小值,即取最小值,最小值为2.4(2011大纲全国理,10)已知抛物线C:y24x的焦点为F,直线y2x4与C交于A,B两点,则cosAFB()A. B.C D答案D解析方法一:联立,解得或,不妨设A在x轴上方,A(4,4),B(1,2),F点坐标为(1,0),(3,4),(0,2),cosAFB.方法

3、二:同上求得A(4,4),B(1,2),|AB|3,|AF|5,|BF|2,由余弦定理知,来源:KcosAFB.5(2011台州二模)已知过抛物线y22px(p0)的焦点F且倾斜角为60的直线l与抛物线在第一、四象限分别交于A、B两点,则的值为()A5B4C3D2答案C解析由题意设直线l的方程为y(x),即x,代入抛物线方程y22px中,整理得y22pyp20,设A(xA,yA),B(xB,yB),则yAp,yBp,所以|3.6(2011海南一模)若AB是过椭圆1(ab0)中心的一条弦,M是椭圆上任意一点,且AM、BM与两坐标轴均不平行,kAM、kBM分别表示直线AM、BM的斜率,则kAMkB

4、M()A BC D答案B解析解法一(直接法):设A(x1,y1),M(x0,y0),则B(x1,y1),kAMkBM.解法二(特殊值法):因为四个选项为确定值,取A(a,0),B(a,0),M(0,b),可得kAMkBM.7(2010吉林省调研)已知过双曲线1右焦点且倾斜角为45的直线与双曲线右支有两个交点,则双曲线的离心率e的取值范围是_答案(1,)解析由条件知,渐近线的倾斜角小于45,即1,1,2,即e21,1e0,只能x,于是y所以点P的坐标是(,)(2)直线AP的方程是xy60设点M的坐标是(m,0),则M到直线AP的距离是,于是|m6|,又6m6,解得:m2椭圆上的点(x,y)到点M

5、的距离是d,d2(x2)2y2x24x420x2(x)215,由于6x6,所以当x时d取最小值.11.(2011新课标全国文,9)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|12,P为C的准线上一点,则ABP的面积为()A18 B24 C36 D48答案C解析设抛物线为y22px,则焦点F,准线x,由|AB|2p12,知p6,所以F到准线距离为6,所以三角形面积为S12636.12已知椭圆1(ab0),过椭圆的右焦点作x轴的垂线交椭圆于A、B两点,若0,则椭圆的离心率e等于()A. B.C. D.答案A解析如上图,F2(c,0)把xc代入椭圆1得A(c,)由0

6、结合图形分析得|OF2|AF2|,即cb2aca2c2ac()210e2e10e.13 (2011辽宁沈阳二中检测)已知曲线C:y2x2,点A(0,2)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则实数a的取值范围是()A(4,) B(,4C(10,) D(,10答案D解析过点A(0,2)作曲线C:y2x2的切线,设方程为ykx2,代入y2x2得,2x2kx20,令k2160得k4,当k4时,切线为l,B点在直线x3上运动,直线y4x2与x3的交点为M(3,10),当点B(3, a)满足a10时,视线不被曲线C挡住,故选D.14双曲线1(a0,b0)的离心率为2,坐标原点到直线A

7、B的距离为,其中A(0,b),B(a,0)(1)求双曲线的标准方程;来源:高&考%资(源#网 wxcKS5U.COM(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点若点M在直线x2上的射影为N,满足0,且|10,求直线l的方程解析(1)依题意有解得a1,b,c2.所以,所求双曲线的方程为x21.(2)当直线lx轴时,|6,不合题意当直线l的斜率存在时,设直线l的方程为yk(x2)由得,(3k2)x24k2x4k230. 因为直线与双曲线的右支交于不同两点,所以3k20.设P(x1,y1),Q(x2,y2),M(x0,y0),则x1、x2是方程的

8、两个正根,于是有所以k23. 因为0,则PNQN,又M为PQ的中点,|10,所以|PM|MN|MQ|PQ|5.又|MN|x025,x03,而x03,k29,解得k3.k3满足式,k3符合题意所以直线l的方程为y3(x2)即3xy60或3xy60.15(2010北京崇文区)已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点(1)求椭圆的方程;(2)当直线l的斜率为1时,求POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存

9、在,请说明理由解析(1)由已知,椭圆方程可设为1(ab0)两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,bc1,a.所求椭圆方程为y21.(2)右焦点F(1,0),直线l的方程为yx1.设P(x1,y1),Q(x2,y2),由得,3y22y10,解得y11,y2.SPOQ|OF|y1y2|y1y2|.(3)假设在线段OF上存在点M(m,0)(0m1),使得以MP、MQ为邻边的平行四边形是菱形因为直线与x轴不垂直,所以设直线l的方程为yk(x1)(k0)由可得,(12k2)x24k2x2k220.x1x2,x1x2.(x1m,y1),(x2m,y2),(x2x1,y2y1)其中x2x1

10、0以MP,MQ为邻边的平行四边形是菱形()()0(x1x22m,y1y2)(x2x1,y2y1)0(x1x22m)(x2x1)(y1y2)(y2y1)0(x1x22m)k(y1y2)0k202k2(24k2)m0m(k0)0m1)的上顶点为A,左、右焦点为F1、F2,直线AF2与圆M:x2y26x2y70相切(1)求椭圆C的方程;(2)若椭圆内存在动点P,使|PF1|,|PO|,|PF2|成等比数列(O为坐标原点),求的取值范围解析(1)圆M:x2y26x2y70化为(x3)2(y1)23,则圆M的圆心为M(3,1),半径r.由A(0,1),F2(c,0),(c),得直线AF2:y1,即xcy

11、c0,由直线AF2与圆M相切,得,解得c或c(舍去)则a2c213,故椭圆C的方程为:y21.(2)由(1)知F1(,0)、F2(,0),设P(x,y),由题意知|PO|2|PF1|PF2|,即()2,化简得:x2y21,则x2y211.因为点P在椭圆内,故y21,即x211,x2,1x2,又x22y22x23,1y2)0,(3,y1)(,y2)0,6y1y20,即y2.由于y1y2,y10,y20.|MN|y1y2y122.当且仅当y1,y2时,等号成立故|MN|的最小值为2.3(2011浙江文,22)如下图,设P是抛物线C1:x2y上的动点,过点P做圆C2:x2(y3)21的两条切线,交直

12、线l:y3于A,B,两点. (1)求圆C2的圆心M到抛物线C1准线的距离(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分,若存在,求出点P的坐标;若不存在,请说明理由来源:高&考%资(源#网 wxc解析(1)因为抛物线C1的准线方程为:y,所以圆心M到抛物线C1准线的距离为:| (3)|.(2)设点P的坐标为(x0,x),抛物线C1在点P处的切线交直线l于点D,再设A,B,D的横坐标分别为xA,xB,xD;过点P(x0,x)的抛物线C1的切线方程为:yx2x0(xx0)当x01时,过点P(1,1)与圆C2的切线PA为:y1(x1),可得xA,xB1,xD1,xAxB2xD.当x01

13、时,过点P(1,1)与圆C2的切线PB为:y1(x1),可得xA1,xB,xD1,xAxB2xD.所以x10.设切线PA,PB的斜率为k1,k2,则PA:yxk1(xx0),PB:yxk2(xx0),将y3分别代入,得xD(x00);xAx0,xBx0(k1,k20)从而xAxB2x0(x3)()又1即(x1)k2(x3)x0k1(x3)210.同理,(x1)k2(x3)x0k2(x3)210所以k1,k2是方程(x1)k22(x3)x0k(x3)210的两个不相等的根,从而k1k2,k1k2,因为xAxB2xD.所以2x0(x3)(),即.从而,进而得,x8,x0.综上所述,存在点P满足题意,点P坐标为(,2)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3