1、导 学 案 装 订 线二轮复习专题五:立体几何5.3空间中的垂直关系【学习目标】1.理解数列的概念和几种简单的表示方法(列表、图象、通项公式)2.了解数列通项公式的意义(数列是自变量为正整数的一类函数)3.理解数列的函数特征,能利用数列的周期性,单调性解决数列的有关问题。4.以极度的热情投入到课堂学习中,体验学习的快乐。【学法指导】1. 先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;4.重点理解的内容:【高考方向】1. 以三视图为载体,考查空间几何体面积
2、、体积的计算.2. 考查空间几何体的侧面展开图及简单的组合体问题【课前预习】:一、知识网络构建二、 高考真题再现2014浙江卷 如图15,在四棱锥A BCDE中,平面ABC平面BCDE,CDEBED90,ABCD2,DEBE1,AC.(1)证明:DE平面ACD;(2)求二面角B AD E的大小解:(1)证明:在直角梯形BCDE中,由DEBE1,CD2,得BDBC,由AC,AB2,得AB2AC2BC2,即ACBC.又平面ABC平面BCDE,从而AC平面BCDE,所以ACDE.又DEDC,从而DE平面ACD.(2)方法一:过B作BFAD,与AD交于点F,过点F作FGDE,与AE交于点G,连接BG.
3、由(1)知DEAD,则FGAD.所以BFG是二面角B AD E的平面角在直角梯形BCDE中,由CD2BC2BD2,得BDBC.又平面ABC平面BCDE,得BD平面ABC,从而BDAB.由AC平面BCDE,得ACCD.在RtACD中,由DC2,AC,得AD.在RtAED中,由ED1,AD,得AE.在RtABD中,由BD,AB2,AD,得BF,AFAD.从而GFED.在ABE,ABG中,利用余弦定理分别可得cosBAE,BG.在BFG中,cosBFG.所以,BFG,即二面角B AD E的大小是.方法二:以D为原点,分别以射线DE,DC为x,y轴的正半轴,建立空间直角坐标系D xyz,如图所示由题意
4、知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,),B(1,1,0)设平面ADE的法向量为m(x1,y1,z1),平面ABD的法向量为n(x2,y2,z2)可算得AD(0,2,),AE(1,2,),(1,1,0)由即可取m(0,1,)由即可取n(1,1,)于是|cosm,n|.由题意可知,所求二面角是锐角,故二面角B AD E的大小是.三、 基本概念检测1(2010浙江改编)设l,m是两条不同的直线,是一个平面,则下列命题正确的是_(填序号)若lm,m,则l;若l,lm,则m;若l,m,则lm;若l,m,则lm.2对于不重合的两个平面与,给定下列条件:存在平面
5、,使得,都垂直于;存在平面,使得,都平行于;存在直线l,直线m,使得lm;存在异面直线l、m,使得l,l,m,m.其中,可以判定与平行的条件有_个3(2009四川卷改编)如图,已知六棱锥PABCDEF的底面是正六边形,PA平面ABC,PA2AB,则下列结论正确的序号是_PBAD;平面PAB平面PBC;直线BC平面PAE;直线PD与平面ABC所成的角为45.4如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只要填写一个你认为是正确的条件即可)【课中研讨】:例1.2014福建卷 在平面四边形ABCD中,ABBDCD1,
6、ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图15所示(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值例2.如图所示,已知四棱柱ABCDA1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC平面ABCD.变式迁移2(2011江苏)如图,在四棱锥PABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD;(2) 平面BEF平面PAD.例3.(2013年高考新课标1(理)如图,三棱柱ABC-A1B1C1中,CA=CB,AB
7、=A A1,BA A1=60.()证明ABA1C;()若平面ABC平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.例4.2014湖南卷 如图16所示,四棱柱ABCD A1B1C1D1的所有棱长都相等,ACBDO,A1C1B1D1O1,四边形ACC1A1和四边形BDD1B1均为矩形(1)证明:O1O底面ABCD;(2)若CBA60,求二面角C1OB1D的余弦值解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1AC.同理DD1BD.因为CC1DD1,所以CC1BD.而ACBDO,因此CC1底面ABCD.由题设知,O1OC1C.故O1O底面ABCD.(2
8、)方法一: 如图(a),过O1作O1HOB1于H,连接HC1.由(1)知,O1O底面ABCD,所以O1O底面A1B1C1D1,于是O1OA1C1.图(a)又因为四棱柱ABCD A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1B1D1,从而A1C1平面BDD1B1,所以A1C1OB1,于是OB1平面O1HC1.进而OB1C1H.故C1HO1是二面角C1OB1D的平面角不妨设AB2.因为CBA60,所以OB,OC1,OB1.在RtOO1B1中,易知O1H2.而O1C11,于是C1H.故cosC1HO1.即二面角C1OB1D的余弦值为.方法二:因为四棱柱ABCD A1
9、B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此ACBD.又O1O底面ABCD,从而OB,OC,OO1两两垂直图(b)如图(b),以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O xyz,不妨设AB2.因为CBA60,所以OB,OC1,于是相关各点的坐标为O(0,0,0),B1(,0,2),C1(0,1,2)易知,n1(0,1,0)是平面BDD1B1的一个法向量设n2(x,y,z)是平面OB1C1的一个法向量,则即取z,则x2,y2,所以n2(2,2,)设二面角C1OB1D的大小为,易知是锐角,于是cos |cos,|.故二面角C1OB1D的余
10、弦值为.【课后巩固】1(2010扬州月考)已知直线a,b和平面,且a,b,那么是ab的_条件2已知两个不同的平面、和两条不重合的直线m、n,有下列四个命题:若mn,m,则n;若m,m,则;若m,mn,n,则;若m,n,则mn.其中正确命题是_(填序号)3设直线m与平面相交但不垂直,给出以下说法:在平面内有且只有一条直线与直线m垂直;过直线m有且只有一个平面与平面垂直;与直线m垂直的直线不可能与平面平行;与直线m平行的平面不可能与平面垂直其中错误的是_4(2009江苏)设和为不重合的两个平面,给出下列命题:若内的两条相交直线分别平行于内的两条直线,则平行于;若外一条直线l与内的一条直线平行,则l
11、和平行;设和相交于直线l,若内有一条直线垂直于l,则和垂直;直线l与垂直的充分必要条件是l与内的两条直线垂直上面命题中,真命题的序号是_(写出所有真命题的序号) 5.2014全国卷 如图11所示,三棱柱ABC A1B1C1中,点A1在平面ABC内的射影D在AC上,ACB90,BC1,ACCC12.(1)证明:AC1A1B; (2)设直线AA1与平面BCC1B1的距离为,求二面角A1 AB C的大小2013年高考陕西卷(理)如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O平面ABCD, . () 证明: A1C平面BB1D1D; () 求平面OCB1与平面BB1D1D的夹角的大小.