1、长丰县实验高中2016 2017学年第一学期高二年级数学(文科)教 案项目内容课题1.3.2 球的体积和表面积(共 1 课时)修改与创新教学目标掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法.教学重、难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.教学准备多媒体课件教学过程一、导入新课:球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.二、讲授新课: 球的半径为R,它的体积和表面积只与
2、半径R有关,是以R为自变量的函数.事实上,如果球的半径为R,那么S=4R2,V=.应用示例例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.则有V球=,V圆柱=R22R=2R3,所以V球=.(2)因为S球=4R2,S圆柱侧=2R2R=4R2,所以S球=S圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2
3、(1)所示,表面积为324的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R,正四棱柱底面边长为a,则轴截面如图2(2),所以AA=14,AC=,又4R2=324,R=9.AC=.a=8.S表=642+3214=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm,求它的内径(钢的密度为7.9 g/cm3,精确到0.1 cm).解:设空心球内径(直径)为2x cm,则钢球质量为7.9=142,x3=11.3,x2.24,直径2x4.5.答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,
4、它的下面是一个直径为1 m、高为3 m的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S13.113=9.3(m2),半球形物体的表面积为S223.1()21.6(m2),所以S1+S29.3+1.6=10.9(m2).10.91501 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际
5、问题的能力.变式训练 有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=,圆锥母线l=2r=,圆锥高为h=3R,V水=3R23R,球取出后,水形成一个圆台,下底面半径r=,设上底面半径为r,则高h=(r-r)tan60=,(r2+r2+rr),5R3=,5R3=,解得r=,h=()R.答:容器中水的高度为()R.课堂小结:本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.布置作业:课本本节练习 1、2、3.板书设计教学反思