ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:2.34MB ,
资源ID:1399047      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1399047-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021高考数学大一轮复习 高考大题专项练六 高考中的概率与统计 理 新人教A版.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021高考数学大一轮复习 高考大题专项练六 高考中的概率与统计 理 新人教A版.docx

1、高考大题专项练六高考中的概率与统计高考大题专项练第12页1.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为

2、两种生产方式的效率有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),P(K2k)0.0500.0100.001k3.8416.63510.828解:(1)第二种生产方式的效率更高.理由如下:由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.由茎叶图可知:

3、用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可.(2)由茎叶图知m=7

4、9+812=80.列联表如下:超过m不超过m第一种生产方式155第二种生产方式515(3)因为K2=40(1515-55)220202020=106.635,所以有99%的把握认为两种生产方式的效率有差异.2.(2019全国,理18)11分制乒乓球比赛,每赢一球得1分.当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.(1)证明X=2就

5、是1010平后,两人又打了两个球该局比赛结束,则这两个球均由甲得分,或者均由乙得分.因此P(X=2)=0.50.4+(1-0.5)(1-0.4)=0.5.(2)解X=4且甲获胜,就是1010平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为0.5(1-0.4)+(1-0.5)0.40.50.4=0.1.3.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7

6、人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人.(2)随机变量X的所有可能取值为0,1,2,3.P(X=k)=C4kC33-kC73(k=0,1,2,3).所以,随机变量X的分布列为X0123P13512351835435随机变量X的数学期望E(X)=0135+11235+21835+3435=

7、127.设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=BC,且B与C互斥.由知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(BC)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.4.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0p0;当p(0.1,1)时,f(p)400

8、,因此应该对余下的产品作检验.5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xywi=18(xi-x)2i=18(wi-w)2i=18(xi-x)(yi-y)i=18(wi-w)(yi-y)46.65636.8289.81.61 469108.8表中wi=xi,w=18i=18wi.(1)根据散点图判断,y=a+bx与y=c+dx哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说

9、明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:当年宣传费x=49时,年销售量及年利润的预报值是多少?当年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线v=+u的斜率和截距的最小二乘估计分别为=i=1n(ui-u)(vi-v)i=1n(ui-u)2,=v-u.解:(1)由散点图可以判断,y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.因为d=i=18(wi-w

10、)(yi-y)i=18(wi-w)2=108.81.6=68,c=y-dw=563-686.8=100.6,所以y关于w的线性回归方程为y=100.6+68w,因此y关于x的回归方程为y=100.6+68x.(3)由(2)知,当x=49时,年销售量y的预报值y=100.6+6849=576.6,年利润z的预报值z=576.60.2-49=66.32.根据(2)的结果知,年利润z的预报值z=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z取得最大值.故当年宣传费为46.24千元时,年利润的预报值最大.6.为了监控某种零件的一条生

11、产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(-3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(-3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.041

12、0.269.9110.1310.029.2210.0410.059.95经计算得x=116i=116xi=9.97,s=116i=116(xi-x)2=116(i=116xi2-16x2)0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,16.用样本平均数x作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3,+3)之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布N(,2),则P(-3Z+3)0.997 3.0.997 3160.957 7,0.0080.09.解:(1)抽取的一个零件的尺寸在(-3,+3)之内

13、的概率为0.9973,从而零件的尺寸在(-3,+3)之外的概率为0.0027,故XB(16,0.0027).因此P(X1)=1-P(X=0)=1-0.9973160.0423.X的数学期望为E(X)=160.0027=0.0432.(2)()如果生产状态正常,一个零件尺寸在(-3,+3)之外的概率只有0.0027,一天内抽取的16个零件中,出现尺寸在(-3,+3)之外的零件的概率只有0.0423,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.()由x=9.97,s0.212,得的估计值为=9.97,的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查.剔除(-3,+3)之外的数据9.22,剩下数据的平均数为115(169.97-9.22)=10.02,因此的估计值为10.02.i=116xi2=160.2122+169.9721 591.134,剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为115(1 591.134-9.222-1510.022)0.008,因此的估计值为0.0080.09.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3