1、基础巩固题组(建议用时:40分钟)一、选择题1.数列0,1,0,1,0,1,0,1,的一个通项公式是an等于()A. B.cos C.cos D.cos 解析令n1,2,3,逐一验证四个选项,易得D正确.答案D2.设an3n215n18,则数列an中的最大项的值是()A. B. C.4 D.0解析an3,由二次函数性质,得当n2或3时,an最大,最大为0.答案D3.(2016黄冈模拟)已知数列an的前n项和为Snn22n2,则数列an的通项公式为()A.an2n3 B.an2n3C.an D.an解析当n1时,a1S11,当n2时,anSnSn12n3,由于a1的值不适合上式,故选C.答案C4
2、.数列an满足an1an2n3,若a12,则a8a4()A.7 B.6 C.5 D.4解析依题意得(an2an1)(an1an)2(n1)3(2n3),即an2an2,所以a8a4(a8a6)(a6a4)224.答案D5.(2015石家庄二模)在数列an中,已知a12,a27,an2等于anan1(nN*)的个位数,则a2 015()A.8 B.6C.4 D.2解析由题意得a34,a48,a52,a66,a72,a82,a94,a108.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 015a33565a52.答案D二、填空题6.在数列an中,a11,对于所有的n2,nN*,都有a1
3、a2a3ann2,则a3a5_.解析由题意知a1a2a3an1(n1)2,an(n2),a3a5.答案7.(2016余姚中学一模)已知数列an的前n项和Snan,则an的通项公式an_.解析当n1时,a1S1a1,a11.当n2时,anSnSn1anan1,.数列an为首项a11,公比q的等比数列,故an.答案8.(2015太原二模)已知数列an满足a11,anan1nanan1(nN*),则an_.解析由已知得n,n1,n2,1,an.答案三、解答题9.根据下列条件,确定数列an的通项公式.(1)a11,an13an2;(2)a11,an1(n1)an;(3)a12,an1anln.解(1)
4、an13an2,an113(an1),3,数列an1为等比数列,公比q3,又a112,an123n1,an23n11.(2)an1(n1)an,n1.n,n1,3,2,a11.累乘可得,ann(n1)(n2)321n!.故ann!.(3)an1anln,an1anlnln.anan1ln,an1an2ln,a2a1ln,ana1lnlnlnln n.又a12,anln n2.10.设数列an的前n项和为Sn.已知a1a(aR且a3),an1Sn3n,nN*.(1)设bnSn3n,求数列bn的通项公式;(2)若an1an,nN*,求a的取值范围.解(1)依题意,Sn1Snan1Sn3n,即Sn1
5、2Sn3n,由此得Sn13n12(Sn3n),又S131a3(a3),故数列Sn3n是首项为a3,公比为2的等比数列,因此,所求通项公式为bnSn3n(a3)2n1,nN*.(2)由(1)知Sn3n(a3)2n1,nN*,于是,当n2时,anSnSn13n(a3)2n13n1(a3)2n223n1(a3)2n2,an1an43n1(a3)2n22n2,当n2时,an1an12a30a9.又a2a13a1.综上,所求的a的取值范围是9,3)(3,).能力提升题组(建议用时:20分钟)11.已知数列an满足an1anan1(n2),a11,a23,记Sna1a2an,则下列结论正确的是()A.a2
6、 0141,S2 0142 B.a2 0143,S2 0145C.a2 0143,S2 0142 D.a2 0141,S2 0145解析由an1anan1(n2),知an2an1an,则an2an1(n2),an3an,an6an,又a11,a23,a32,a41,a53,a62,所以当kN时,ak1ak2ak3ak4ak5ak6a1a2a3a4a5a60,所以a2 014a41,S2 014a1a2a3a4132(1)5.答案D12.(2016桐乡高级中学监测)已知数列an满足a12,an1(nN*),则该数列的前2 015项的乘积a1a2a3a2 015_.解析由题意可得,a23,a3,a
7、4,a52a1,数列an是以4为周期的数列,而2 01545033,a1a2a3a41,前2 015项的乘积为1503a1a2a33.答案313.已知ann2n,且对于任意的nN*,数列an是递增数列,则实数的取值范围是_.解析因为an是递增数列,所以对任意的nN*,都有an1an,即(n1)2(n1)n2n,整理,得2n10,即(2n1).(*)因为n1,所以(2n1)3,要使不等式(*)恒成立,只需3.答案(3,)14.在数列an中,a11,anan1(nN*).(1)求证:数列a2n与a2n1(nN*)都是等比数列;(2)若数列an的前2n项和为T2n,令bn(3T2n)n(n1),求数列bn的最大项.(1)证明因为anan1,an1an2,所以.又a11,a2,所以数列a1,a3,a2n1,是以1为首项,为公比的等比数列;数列a2,a4,a2n,是以为首项,为公比的等比数列.(2)解由(1)可得T2n(a1a3a2n1)(a2a4a2n)33,所以bn3n(n1),bn13(n1)(n2),所以bn1bn3(n1)3(n1)(2n),所以b1b2b3b4bn,所以(bn)maxb2b3.