1、21.3 二次根式的加减教学目标1会将二次根式化为最简二次根式,掌握二次根式加减法的运算;2熟练进行二次根式的加减运算,并运用其解决问题;3正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简教学重难点【教学重点】将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式加减乘除法则及运算律进行运算,并把结果化简.课前准备无教学过程一、情境导入小明家的客厅是长7.5m,宽5m的长方形,他要在客厅中截出两个面积分别为8m2和18m2的正方形铺不同颜色的地砖,问能否截出?二、合作探究探究点一:同类二次根式例1:已知最简二次根式与能够合并同类项,求ab的值解析:利用最简二
2、次根式的概念求出a,b的值,再代入ab求解即可解:最简二次根式与能够合并同类项,ab2,2ab3a4,解得a3,b1,ab3(1)2.方法总结:根据同类二次根式的概念求待定字母的值时,应该根据同类二次根式的概念建立方程或方程组求解探究点二:二次根式的运算【类型一】 二次根式的加减运算例2:计算:()2|2|.解析:二次根式的加减运算应先化简,再合并同类二次根式解:原式222.方法总结:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并时系数相加减,根式不变【类型二】 二次根式的四则运算例3:计算:(1)9;(2)2;(3)(2).解析:先把各二次根式化为
3、最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算解:(1)原式99;(2)原式25;(3)原式(2)1.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式【类型三】 二次根式的化简求值例4:先化简,再求值:,其中a2,b2.解析:先将原式化为最简形式,再将a与b的值代入计算即可求出解:原式.当a2,b2时,原式.方法总结:化简求值时一般是先化简为最简分式或整式,再代入求值化简时不能跨度太大,缺少必要的步骤易造成错解【类型四】 二次根式运算在实际生活中的应用例5:母亲节快到了,为了表示对妈妈的感恩,小号同学特地做了两
4、张大小不同的正方形的壁画送给妈妈,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2m长的金色细彩带,请你帮他算一算,他的金色细彩带够用吗?如果不够,还需买多长的金色细彩带(1.414,结果保留整数)?解析:先求出每张正方形壁画的边长,再根据正方形的周长公式求所需金色细彩带的长解:镶壁画所用的金色细彩带的长为:4()4(2015)140197.96(cm)因为1.2m120cm197.96cm,所以小号的金色细彩带不够用.197.9612077.9678(cm),即还需买78cm的金色细彩带方法总结:利用二次根式来解决生活中的问题,应认真分析题意,注意计算的正确性与结果的要求三、板书设计1同类二次根式2二次根式的加减一般地,二次根式加减时,可以先将二次根式化简成最简二次根式,再将被开方数相同的二次根式进行合并3二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的四、教学反思在授课过程中,要以学生为主体,进行探究性学习,让学生自己发现规律,得出结论在例题的选择上可由简到难,符合学生的认知规律,便于学生掌握知识在得到定义、法则的过程中,让学生经历发现、思考、探究的过程,体会学习知识的成功与快乐3