ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:369.50KB ,
资源ID:137787      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-137787-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《五年经典推荐 全程方略》2015届高三数学专项精析精炼:2010年考点29离散型随机变量及其分布列、二项分布及其应用、离散型随机变量的均值与方差.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《五年经典推荐 全程方略》2015届高三数学专项精析精炼:2010年考点29离散型随机变量及其分布列、二项分布及其应用、离散型随机变量的均值与方差.doc

1、温馨提示: 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。考点29 离散型随机变量及其分布列、二项分布及其应用、离散型随机变量的均值与方差 1(2010海南宁夏高考理科T6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )(A)100 (B)200 (C)300 (D)400 【命题立意】本题主要考查了二项分布的期望的公式.【思路点拨】通过题意得出补种的种子数服从二项分布.【规范解答】选.由题意可知,补种的种子数记为X,服从二项分布,即,所以X的数学期望.2

2、(2010山东高考理科5)已知随机变量服从正态分布,若,则( )(A)0.477 (B)0.628 (C)0.954 (D)0.977【命题立意】本题考查正态分布的基础知识,考查考生的推理论证能力和运算求解能力.【思路点拨】先由服从正态分布得出正态曲线关于直线对称,于是得到与的关系,最后进行求解.【规范解答】 选C.因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.3(2010江苏高考22)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则

3、亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2) 求生产4件甲产品所获得的利润不少于10万元的概率.【命题立意】本题主要考查概率的有关知识,考查运算求解能力.【思路点拨】利用独立事件的概率公式求解.【规范解答】(1)由题设知,X的可能取值为10,5,2,-3,且 P(X=10)=0.80.9=0.72, P(X=5)=0.20.9=0.18, P(X=2)=0.80.1=0.08, P(X=-3)=0.20.1=0.02. 由此得X的分布列为:X10

4、52-3P0.720.180.080.02(2)设生产的4件甲产品中一等品有件,则二等品有件. 由题设知,解得, 又,得或.所求概率为.答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.4(2010安徽高考理科21)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令,则是对两次排

5、序的偏离程度的一种描述. (1)写出的可能值集合;(2)假设等可能地为1,2,3,4的各种排列,求的分布列;(3)某品酒师在相继进行的三轮测试中,都有,试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);你认为该品酒师的酒味鉴别功能如何?说明理由.【命题立意】本题主要考查离散型随机变量及其分布列,考查考生的计数能力,抽象概括能力,概率思想在生活中的应用意识和创新意识.【思路点拨】用列表或树形图表示1,2,3,4的排列的所有可能情况,计算每一种排列下的X值,即可得出其分布列及相关事件的概率.【规范解答】(I)X的可能值的集合为.(II)1,2,3,4的排列共24种,在等可能的假定

6、下,计算每种排列下的X值,得到X02468(III)(i)(ii)由于是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有X的结果的可能性很小,所以可以认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.5(2010浙江高考理科19)如图,一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个 管道的可能性是相等的某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖(1)已知获得l,2,3等奖的折扣率分别为50,70,90记随机变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(2)若有3人次(投入l球为l

7、人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求【命题立意】本题主要考查随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识.【思路点拨】(1)求分布列时,要先找出从M出发到相应的位置有几种路,然后再用独立事件的乘法公式.如从M到A有两种路,所以;(2)第(2)题是一个二项分布问题.【规范解答】 ()由题意得的分布列为507090P则=50+70+90=.()由()可知,获得1等奖或2等奖的概率为+=.由题意得B(3,)则P(=2)=()2(1-)=.【方法技巧】1.独立事件的概率满足乘法公式,互斥事件的概率满足加法公式;2.n次独立

8、重复试验是一个很重要的试验,要注意在实际问题中的应用.6(2010北京高考理科7)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(),且不同课程是否取得优秀成绩相互独立.记为该生取得优秀成绩的课程数,其分布列为0123()求该生至少有1门课程取得优秀成绩的概率;()求,的值;()求数学期望.【命题立意】本题考查了对立事件、独立事件的概率及期望的求法.【思路点拨】(1)“至少”问题一般用对立事件求概率方便.(2)利用独立事件分别求出时的概率,联立方程解出的值.(3)求出,代入期望公式即可.【规范解答】事件表示“该生第门课程取得优秀成

9、绩”,=1,2,3,由题意知 ,(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“”是对立的,所以该生至少有1门课程取得优秀成绩的概率是 ,(II)由题意知 整理得 ,由,可得,.(III)由题意知 = d = =.【方法技巧】(1)“至少”“至多”问题,一般采用对立事件求概率较容易;(2)事件A与B独立,则.7(2010福建高考理科16)设S是不等式的解集,m,nS. (I)记“使得m + n = 0 成立的有序数组(m , n)”为事件A,试列举A包含的基本事件; (II)设,求的分布列及其数学期望.【命题立意】本题考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分

10、类与整合思想、必然与或然、化归与转化思想.【思路点拨】第一步先求解出一元二次不等式的解集,得到集合S,进而求出A所包含的基本事件;第二步求出m的可能取值,再求出的可能取值,计算出所对应的概率,画出分布列,求出数学期望.【规范解答】(I),则由有,因此A包含的基本事件为:;(II)的可能取值为,则的可能取值为,因此的分布列为:0149所以其数学期望为 【方法技巧】有关概率统计的问题,利用枚举法求解越来越常见,枚举时一定要考虑全面,漏解是最常见的错误,如本题要求的是有序数组(m,n),坐标的位置是有序的,如(1,2)和(2,1)是不同的情况,不能当成同一种.因为这部分内容与实际生活联系比较大,随着

11、新课改的深入,高考将越来越重视这部分的内容,试题的难度为中等或中等偏易.8(2010山东高考理科20)某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下: 每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分; 每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局; 每位参加者按问题顺序作答,直至答题结束.假设甲同学对问题回答正确的概率依次为,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用表示甲

12、同学本轮答题结束时答题的个数,求的分布列和数学期望.【命题立意】本题考查了相互独立事件同时发生的概率,考查了离散型随机变量的分布列以及数学期望的知识,考查了考生利用所学知识解决实际问题的能力.【思路点拨】(1)甲能进入下一轮有以下几种情形:前三个问题回答正确;第一个问题回答错误,后三个问题回答正确;只有第二个问题回答错误;只有第三个问题回答错误;第一、三错误,第二、四正确. (2)随机变量的可能取值为2,3,4.【规范解答】用表示甲同学第个问题回答正确,用表示甲同学第个问题回答错误.则与互为对立事件,由题意得P(M1) P(M2) P(M3) P(M4)所以P(N1) P(N2) P(N3)(

13、1) 记“甲同学能进入下一轮”为事件Q,Q=+,由于每题答题结果相互独立,因此P(Q)= P(+)=+=+=.(2)由题意,随机变量的可能取值为2,3,4,由于每题答题结果相互独立,因此P(P(=3) =P(M1M2M3)+ P(M1N2N3)P(=4) =1- P(=2)-P(=3)=1-所以的分布列为234数学期望=+4=.9. (2010天津高考理科8)某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1

14、分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列.【命题立意】本小题主要考查二项分布及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.【思路点拨】利用二项分布及独立事件的概率公式求解.【规范解答】(1)设为射手在5次射击中击中目标的次数,则.在5次射击中, 恰有2次击中目标的概率(2)设“第次射击击中目标”为事件;“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件,则 =(3)由题意可知,的所有可能取值为P( P( =P(P(P(所以的分布列是01236P 关闭Word文档返回原板块。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3