ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:764.50KB ,
资源ID:1374431      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1374431-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学讲义100微专题098含新信息问题的求解.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学讲义100微专题098含新信息问题的求解.doc

1、微专题98 含新信息问题的求解一、基础知识:所谓“新信息背景问题”,是指题目中会介绍一个“课本外的知识”,并说明它的规则,然后按照这个规则去解决问题。它主要考察学生接受并运用新信息解决问题的能力。这类问题有时提供的信息比较抽象,并且能否读懂并应用“新信息”是解决此类问题的关键。在本文中主要介绍处理此类问题的方法与技巧1、读取“新信息”的步骤(1)若题目中含有变量,则要先确定变量的取值范围(2)确定新信息所涉及的知识背景,寻找与所学知识的联系(3)注意信息中的细节描述,如果是新的运算要注意确定该运算是否满足交换律(4)把对“新信息”的理解应用到具体问题中,进行套用与分析。2、理解“新信息”的技巧

2、与方法(1)可通过“举例子”的方式,将抽象的定义转化为具体的简单的应用,从而加深对新信息的理解(2)可用自己的语言转述“新信息”所表达的内容,如果能够清晰描述,那么说明对此信息理解的较为透彻。(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律(4)如果“新信息”是书本知识上某个概念的推广,则要关注此信息与原概念的不同之处,以及在什么情况下可以使用原概念。二、典型例题例1:设是两个集合,定义集合,如果,则等于( )A. B. C. D. 思路:依可知该集合为在中且不属于中的元素组成,或者可以理解为集合去掉的元素后剩下的集合。先解出中的不等式。 ,所以,从而可得: 答案:B例2:

3、在内有定义。对于给定的正数,定义函数取函数。若对任意的,恒有,则( ) A的最大值为2 B. 的最小值为2 C的最大值为1 D. 的最小值为1 思路:由所给分式函数可知,若,则取,如果,就取,由这个规则可知,若恒成立,意味着,均有恒成立,从而将问题转化为恒成立问题,即,下面求的最大值:,可知在单调递增,在单调递减,所以,从而,即的最小值为1答案:D例3:设集合,在上定义运算为:,其中为被4除的余数,则满足关系式的的个数为( ) A. 4 B. 3 C. 2 D. 1思路:本题的关键在于读懂规则,“”运算的结果其实与角标和除以4的余数相关,如果理解文字叙述较为抽象不如举几个例子,例如:,按照要求

4、,除以4的余数为0,所以。掌握规律后再看所求关系式:要求得,则需要先解出,将其视为一个整体,可知,即除以4的余数为0,可推断,即,不妨设,即除以4的余数为2,则的值为,所以或者,共有两个解答案:C例4:定义两个平面向量的一种运算,其中为的夹角,对于这种运算,给出以下结论: ; ; 若,则你认为恒成立的有( )A. 1个 B. 2个 C. 3个 D. 4个思路:本题的新运算,即的模长乘以夹角。所以对于结论,;对于,而,显然当时等式不成立;对于,(其中表示的夹角),而,显然等式不会恒成立(也可举特殊情况如,左边为0,而右边大于等于0);对于,可代入坐标进行运算,为了计算简便考虑将左边平方,从而 ,

5、可与 找到联系:,即。综上所述,正确答案:B例5:如果函数对任意两个不等实数,均有,在称函数为区间上的“G”函数,给出下列命题: 函数是上的“G”函数 函数是上的“G”函数 函数是上的“G”函数 若函数是上的“G”函数,则 其中正确命题的个数是( )A. B. C. D. 思路:本题看似所给不等式复杂,但稍作变形可得:,所以即与同号,反映出是上的增函数,从而从单调性的角度判断四个命题:恒成立,所以是上的增函数:可通过作出函数的图像来判断分段函数是否在给定区间上单调递增,通过作图可知正确,不正确:若是“G函数”,则是上的增函数,所以即恒成立,因为,所以可得:,正确综上所述:正确,共有三个命题答案

6、:C例6:对于各数互不相等的正数数组,其中,如果在时,有,则称“与”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”,例如:数组中有顺序“”,“”,其“顺序数”等于2,若各数互不相等的正数数组的“顺序数”是4,则的“顺序数”是( )A. B. C. D. 思路:本题中对于“顺序”的定义为,即序数小的项也小。要得到“顺序数”则需要对数组中的数两两进行比较,再进行统计。在所求数组中可发现刚好是进行倒序的排列,所以原先数组的“顺序”在新数组中不成立,而原先数组不成“顺序”的(即)反而成为所求数组的“顺序”。在五元数组中任意两个数比较大小,共有组,在中“顺序”有4个,则非“顺

7、序”有6个,所以到了中,顺序数即为6答案:B小炼有话说:本题也可以通过特殊的例子得到答案:例如由的“顺序数”是4,假设,其余各项,则在中即可数出顺序数为6例7:对任意实数定义运算如下:,则函数的值域为( )A. B. C. D. 思路:本题可将描述成取中较小的数,即,所以对于,即为中较小的数。解不等式,则,所以,从而可解得值域为答案:B小炼有话说:本题也可以利用数形结合的方式, 的图像为将的图像画在同一坐标系下,取位于下方的部分,从而作出的图像,其中的交点通过计算可得,所以结合图像即可得到的值域为,即例8:已知平面上的线段及点,任取上一点,线段长度的最小值称为到的距离,记作(1)求点到线段的距

8、离(2)设是长为2的线段,求点的集合所表示的图形面积思路:首先要明确新定义的“距离”,即线段上的点到该点的最小值。此时可做几个具体的图形来理解定义。可发现过作线段的垂线,若垂足在线段上,则垂线段最短,与传统的定义相同;若垂足在线段的延长线上,则需找线段上距离点最近的,即线段的某个端点。在第(1)问中,作出图像可得在线段上的垂足位于线段延长线上,所以只需比较到两个端点的距离即可;在第(2)问中,先作出的图形,表示的图形是长为2,宽为2的正方形和两个半径是1的半圆的组合图形,则为该图形的内部,再求出面积即可解:(1)设线段的端点,代入直线方程可得: (2)若,则点的轨迹为长 ,宽的正方形和两个半径

9、 的半圆的组合图形 例9:设表示不超过的最大整数(如),对于给定的,定义,则当时,函数的值域为( )A. B. C. D. 思路:由定义的式子可知分子分母含多少项,与的取值有关,即分子分母分别为个项的乘积,所以根据的定义将分为和两段进行考虑。当时,所以,所以在的值域为;当时,所以,从而在 单调递减, ,综上所述可得:答案:B例10:在实数集中,我们定义的大小关系“”为全体实数排了一个“序”,类似的,我们这平面向量集合上也可以定义一个称为“序”的关系,记为“”。定义如下:对于任意两个向量,当且仅当“ ”或“且”,按上述定义的关系“”,给出下列四个命题: 若,则 若,则 若,则对于任意的, 对于任

10、意的向量,其中,若,则其中命题正确的序号为_思路:从题意中可发现比较向量的“序”主要比较的是坐标,其中优先比较横坐标,若横坐标相等则再比较纵坐标,结合这个规律便可分析各个命题:(为方便说明,任一向量的横坐标记为,纵坐标记为:显然,所以,所以,综上可得:由可知:或“且”,同理:由可得:或“且”,所以由不等式和等式的传递性可得“或“且”成立,所以:设,由由可知:或“且”,所以或“且”成立,所以:设,由可知:或“且”,考虑 若“且”,则 由可知存在一种情况:且,则即,故不正确答案:小炼有话说:本题处理的关键在于定义中的一种情况:且对无大小限制,且数量积的结果不仅与取值相关,还与的值相关。所以在考虑反例时就可以利用消除横坐标大小的关系。进而的大小关系由的纵坐标决定,就能轻松找到反例了

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3