ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:104.59KB ,
资源ID:1373746      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1373746-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学北师大版选择性必修第一册训练:第二章 1-2 椭圆的简单几何性质 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学北师大版选择性必修第一册训练:第二章 1-2 椭圆的简单几何性质 WORD版含解析.docx

1、第二章圆锥曲线1椭圆1.2椭圆的简单几何性质课后篇巩固提升合格考达标练1.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.223答案C解析因为椭圆C的一个焦点为(2,0),所以其焦点在x轴上,c=2,所以a2-4=c2,所以a2=8,a=22,所以椭圆C的离心率e=ca=22.2.过椭圆x24+y23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,3D.4,23答案B解析由题意知a=2,b=3,c=1,最长弦过两个焦点,长为2a=4,最短弦垂直于x轴,长度为当x=c=1时,纵坐标的绝对值的2倍,长度为3.3.已知椭圆x2

2、a2+y2b2=1与椭圆x225+y216=1有相同的长轴,椭圆x2a2+y2b2=1的短轴长与椭圆y221+x29=1的短轴长相等,则()A.a2=25,b2=16B.a2=9,b2=25C.a2=25,b2=9或a2=9,b2=25D.a2=25,b2=9答案D解析椭圆x225+y216=1的长轴长为10,椭圆y221+x29=1的短轴长为6,由题意可知椭圆x2a2+y2b2=1的焦点在x轴上,即有a=5,b=3.所以a2=25,b2=9.4.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的2倍,则m的值为()A.12B.14C.2D.4答案B解析因为椭圆x2+my2=1的焦点在y轴上

3、,短半轴长为1,长轴长是短轴长的2倍,故1m=2,解得m=14.5.焦点在x轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为()A.x236+y216=1B.x216+y236=1C.x26+y24=1D.y26+x24=1答案A解析依题意得c=25,a+b=10,又a2=b2+c2,所以解得a=6,b=4,椭圆的标准方程为x236+y216=1.6.已知长方形ABCD,AB=4,BC=3,则以A,B为焦点,且过点C,D的椭圆的离心率为.答案12解析如图,AB=2c=4,点C在椭圆上,|CB|+|CA|=2a=3+5=8,e=2c2a=48=12.7.已知椭圆的短半轴长为1,离心率

4、0e32,则长轴长的取值范围为.答案(2,4解析e=1-(ba)2,b=1,0e32,01-(1a)232,则1a2,2b0)的左、右焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点M43,13,求椭圆C的离心率.解2a=|MF1|+|MF2|=(43+1)2+(13)2+(43-1)2+(13)2.所以a=2.又由已知c=1,所以椭圆C的离心率e=ca=12=22.等级考提升练9.如图,已知F1,F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为()A.3-1B.2-3C.22D.32答案A解

5、析过F1的直线MF1是圆F2的切线,F1MF2=90,|MF2|=c,|F1F2|=2c,|MF1|=3c,由椭圆定义可得|MF1|+|MF2|=c+3c=2a,椭圆离心率e=21+3=3-1.10.椭圆(m+1)x2+my2=1的长轴长是()A.2m-1m-1B.-2-mmC.2mmD.-21-mm-1答案C解析椭圆方程可化简为x211+m+y21m=1,由题意,知m0,11+mb0)上,点M(a,b)为平面上一点,O为坐标原点,则当|OM|取最小值时,椭圆的离心率为()A.33B.12C.22D.32答案C解析点P(2,1)在椭圆x2a2+y2b2=1(ab0)上,可得4a2+1b2=1,

6、M(a,b)为平面上一点,O为坐标原点,则|OM|=(a2+b2)(4a2+1b2)=5+4b2a2+a2b25+24b2a2a2b2=3,当且仅当a2=2b2时,等号成立,此时由4a2+1b2=1,a2=2b2,解得a2=6,b2=3.所以e=a2-b2a2=12=22.故选C.13.(多选题)如图,已知F1,F2分别是椭圆x2a2+y2b2=1(ab0)的左、右焦点,点P是该椭圆在第一象限内的点,F1PF2的平分线交x轴于Q点,且满足OF2=4OQ,则椭圆的离心率e可能是()A.18B.14C.12D.34答案CD解析OF2=4OQ,|QF2|=34c,|OQ|=14c,则QF1=54c.

7、PQ是F1PF2的平分线,|PF1|PF2|=|QF1|QF2|=53,又|PF1|+|PF2|=2a,|PF1|=5a4,|PF2|=3a4.在PF1F2中,由余弦定理得cosF1PF2=2516a2+916a2-4c225a43a4=1715-3215e2,-1cosF1PF21,-11715-3215e21,解得14eb0),由e=22,知ca=22,故b2a2=12.由于ABF2的周长为|AB|+|BF2|+|AF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=16,故a=4,b2=8,椭圆C的方程为x216+y28=1.15.如图,把椭圆x24+y22=4的长轴A

8、B分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=.答案28解析根据题意,把椭圆x24+y22=4的长轴AB分成8等份,设另一焦点为F2,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F|+|P7F|=|P7F2|+|P7F|=2a,同理,其余两对的和也是2a.又|P4F|=a,|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+

9、|P7F|=7a=28.16.(1)求与椭圆x29+y24=1有相同的焦点,且离心率为55的椭圆的标准方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x轴上的椭圆的标准方程.解(1)c=9-4=5,所求椭圆的焦点为(-5,0),(5,0).设所求椭圆的方程为x2a2+y2b2=1(ab0).e=ca=55,c=5,a=5,b2=a2-c2=20,所求椭圆的方程为x225+y220=1.(2)椭圆的焦点在x轴上,设它的标准方程为x2a2+y2b2=1(ab0).2c=8,c=4,又a=6,b2=a2-c2=20.椭圆的方程为x236+y220=1.

10、新情境创新练17.椭圆x2a2+y2b2=1(ab0)上有一点P,F1,F2分别为椭圆的左、右焦点,椭圆内一点Q在线段PF2的延长线上,且QF1QP,sin F1PQ=513,则该椭圆离心率的取值范围是()A.2626,1B.15,53C.15,22D.2626,22答案D解析QF1QP,点Q在以F1F2为直径,原点为圆心的圆上,点Q在椭圆的内部,以F1F2为直径的圆在椭圆内,cb.c2a2-c2,e212,故0e22.sinF1PQ=513,cosF1PQ=1213.设|PF1|=m,|PF2|=n,则|PF1|+|PF2|=m+n=2a,在PF1F2中,由余弦定理得4c2=m2+n2-2mn1213.4c2=(m+n)2-2mn-2mn1213,即4c2=4a2-5013mn,mn=2625(a2-c2).由基本不等式得mnm+n22=a2,当且仅当m=n时取等号,由题意知QF1QP,mn,mnm+n22=a2,2625(a2-c2)a2,a2126,e2626,综上可得2626e22.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3