ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:1.11MB ,
资源ID:1371749      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1371749-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(黑龙江省哈尔滨师范大学附属中学2019-2020学年高二数学下学期期末考试试题 文(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

黑龙江省哈尔滨师范大学附属中学2019-2020学年高二数学下学期期末考试试题 文(含解析).doc

1、黑龙江省哈尔滨师范大学附属中学2019-2020学年高二数学下学期期末考试试题 文(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的)1. 复数(其中i是虚数单位)的实部是( )A. 1B. C. D. 0【答案】D【解析】【分析】化简复数即可得答案.【详解】,的实部是0.故选:D【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.2. 已知函数,其导函数为,则( )A. B. C. D. 【答案】C【解析】【分析】可以求出导函数,从而可得出的值.【详解】解:,.故选:C.【点睛】本题考查了基本初等函数的求导

2、公式,已知函数求值的方法,考查了计算能力,属于基础题.3. 独立性检验中,为了调查变量与变量的关系,经过计算得到,表示的意义是( )A. 有99%的把握认为变量与变量没有关系B. 有1%的把握认为变量与变量有关系C. 有0.01%把握认为变量与变量有关系D. 有99%的把握认为变量与变量有关系【答案】D【解析】【分析】根据独立性检验的意义进行判断,即可得出结论.【详解】解:根据独立性检验,由的意义:可知有的把握度,即有99%的把握认为变量与变量有关系.故选:D.【点睛】本题考查独立性检验的意义和应用问题,属于基础题.4. 曲线在点处的切线方程为( )A. B. C. D. 【答案】D【解析】【

3、分析】只需利用导数的几何意义计算曲线在点处的导数值即可.【详解】由已知,故切线的斜率为,所以切线方程为,即.故选:D.【点睛】本题考查导数的几何意义,要注意在某点处的切线与过某点的切线的区别,是一道基础题.5. 2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,“十四冬”作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图则下面叙述正确的是( )A. 甲的轮滑指标高于他的雪地足球

4、指标B. 乙的雪地足球指标低于甲的冰尜指标C. 甲的爬犁速降指标高于乙的爬犁速降指标D. 乙的俯卧式爬犁指标低于甲的雪合战指标【答案】C【解析】【分析】根据指标雷达图,分别判断各选项即可.【详解】由指标雷达图可知:对于A,甲的轮滑指标为4,雪地足球指标为4,所以A错误;对于B,乙的雪地足球指标为4,甲的冰尜指标3,所以B错误;对于C,甲的爬犁速降指标为5,乙的爬犁速降指标为4,所以C正确;对于D,乙的俯卧式爬犁指标为5,甲的雪合战指标为5,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了读图分析能力,统计图表的简单应用,属于基础题.6. 执行如图所示的程序框图,若输入的值为,则输

5、出的值为( )A. 3B. 2C. 1D. 0【答案】A【解析】【分析】本题可根据程序框图进行模拟运算,输入,然后根据程序框图中的关系式以及判定条件进行运算,即可得出结果.【详解】模拟程序的运行:输入,不能被3整除,可得:;27能被3整除,可得:;9能被3整除,可得:,此时,终止循环,输出,故选:A.【点睛】本题考查通过程序框图进行运算并得出结果,主要考查循环结构框图,能否明确程序框图中运算的流程以及所包含的关系式是解决本题的关键,考查计算能力,是简单题.7. 已知函数的导函数的图象如图所示,则关于的结论正确的是( )A. 在区间上为减函数B. 在处取得极小值C. 在区间,上为增函数D. 在处

6、取得极大值【答案】B【解析】【分析】结合图象,求出函数的单调区间和极值点即可【详解】由图象得:在递减,在递增,在递减,故在取极小值,在取极大值,故选:B.【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及数形结合思想,是一道常规题8. 采用简单随机抽样的方法,从含有6个个体的总体中抽取1个容量为2的样本,则某个个体被抽到的概率为( )A. B. C. D. 【答案】B【解析】【分析】根据每个个体被抽到的概率相等,所以每个个体被抽到的概率是样本容量和总体数量的比值.【详解】由于每个个体被抽到的概率相等,所以每个个体被抽到的概率是.故选:B【点睛】本题考查了简单随机抽样每个个体被抽到的概

7、率相等,考查了学生概念理解,数学运算的能力,属于基础题.9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )A. 82.5B. 83C. 93D. 72【答案】A【解析】【分析】由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2.【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是,即82.5故选:A【点睛】本题考查读取茎叶图数据并求中位数,属于基础题.10. 若函数在区间单调递增,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】 ,函数在单调递增,在上恒成立,即在上

8、恒成立令,则,当时,单调递增,当时,单调递减选C点睛:函数的单调性与导函数的关系(1)若在内,则在上单调递增(减)(2)在上单调递增(减)()在上恒成立,且在的任意子区间内都不恒等于0(3)若函数在区间内存在单调递增(减)区间,则在上有解11. 华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检

9、测效率:每16人为组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验将会是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查以此类推,最终从这16人中认定那名感染者需要经过( )次检测.A. 3B. 4C. 6D. 7【答案】B【解析】【分析】类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一

10、组进行检测,以此类推,即可得解.【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选:B.【点睛】

11、本题考查的是二分法的实际应用,考查学生的逻辑推理能力,属于基础题.12. 已知函数,函数,若方程恰有三个实数解,则实数的取值范围为( )A. B. C. D. 【答案】D【解析】【分析】要使方程恰有三个实数解,则函数的图象恰有三个交点,再分别作出函数的图象,观察图像的交点个数即可得解.【详解】解:依题意,画出的图象,如图直线过定点,由图象可知,函数的图象与的图象相切时,函数的图象恰有两个交点下面利用导数法求该切线的斜率设切点为,由,得,化简得,解得或(舍去),要使方程恰有三个实数解,则函数的图象恰有三个交点,结合图象可知,所以实数的取值范围为,故选:D【点睛】本题考查了方程的解的个数与函数图像

12、交点个数的关系,重点考查了数形结合的数学思想方法,属中档题.二、填空题(本大题共4小题,每小题5分,共20分)13. 总体由编号为01,02,29,30的30个个体组成,现从中抽取一个容量为6的样本,请以随机数表第1行第5列开始,向右读取,则选出来的第5个个体的编号为_.70 29 17 12 13 40 33 12 38 26 13 89 51 0356 62 18 37 35 96 83 50 87 75 97 12 55 93【答案】03【解析】【分析】根据随机数表,依次进行选择即可得到结论【详解】解:从随机数表第1行第5列开始,向右读取,依次选取两个数字中小于30的编号依次为17,12

13、,13,26,03则第5个个体的编号为03.故答案为:03【点睛】本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,属于基础题14. 一个社会调查机构就某地居民的月收入情况调查了1000人,并根据所得数据绘制了样本频率分布直方图(如图所示),则月收入在2000,3500)范围内的人数为_ 【答案】700【解析】【分析】先计算出内的频率,然后乘以总人数,得到这个范围内的人数.【详解】内的频率为,故人数为人.【点睛】本小题主要考查频率分布直方图,考查频率的计算和频数的计算,属于基础题.15. 若函数在区间上不单调,则实数a的取值范围为_.【答案】【解析】【分析】函数在区间上不单调可

14、以转化为导函数在区间内有解来解决【详解】解:,函数在区间上不单调,在内有解.故答案为:.【点睛】本题主要考查了导数研究函数的单调性问题.属于较易题.16. 用火柴棒按如图的方法搭三角形,按图示的规律搭下去,则第100个图形所用火柴棒数为_【答案】201【解析】【分析】分析图形中火柴数变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数.【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为,则第100个图形所用火柴棒数为2100+1201.故答案为:201【点睛】本题考查合情推理的应用,属于基础题.三.解答题(解答应写出文字说明,证明过程或

15、演算步骤)17. 在直角坐标系中,以原点为极点,x轴非负半轴为极轴,已知直线的极坐标方程为,曲线(1)写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使它到直线的距离最小,并求出最小值.【答案】(1) (为参数)(2),【解析】【分析】(1)由公式可化极坐标方程为直角坐标方程,由公式可得曲线的参数方程(2)利用曲线参数方程设点坐标,求出点到直线距离,结合三角函数的性质得最大值【详解】(1)由得的直角坐标方程为,即,由得曲线的参数方程为(为参数);(2)设,则到直线的距离为,所以时,所以,所以【点睛】本题考查极坐标方程与直角坐标方程互化,考查参数方程与普通方程的互化,考查椭圆参数方

16、程的应用,点到直线的距离公式,正弦函数的性质,属于中档题18. 设函数,曲线在点处的切线方程为.(1)求的解析式;(2)求的极值.【答案】(1);(2)极大值为,极小值为.【解析】【分析】(1)求,由已知可得,求出值即可;(2)由(1)得,求解不等式,得到的单调区间,即可得出结论.详解】(1),曲线在点处的切线方程为,所以,;(2)由(1)得,令或,或,递增区间是,递减区间是,的极大值为,极小值为.【点睛】本题考查导数的几何意义以及应用导数求函数的极值,考查计算求解能力,属于基础题.19. 已知.(1)求不等式的解集;(2)若的最小值为M,且,求证:.【答案】(1);(2)证明见解析【解析】【

17、分析】(1)分、和三种情况,分别解不等式,进而可得出答案;(2)先求出的最小值,可求出的M的值,再结合柯西不等式,可证明结论.【详解】(1)当时,等价于,该不等式恒成立;当时,则等价于,该不等式不成立;当时,则等价于,解得,所以不等式的解集为:.(2)因为,当时取等号,所以,由柯西不等式可得,当且仅当时等号成立,所以.【点睛】本题考查绝对值不等式的解法,考查不等式的证明,考查分类讨论的数学思想的应用,考查学生的推理论证能力,属于基础题.20. 目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经

18、过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.(i)请将表格补充完整;短潜伏者长潜伏者合计60岁及以上9060岁以下140合计300(ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临

19、床试验,再从选取的7人中随机抽取两人做期临床试验,求两人中恰有1人为“长潜伏者”的概率.【答案】(1)6,250人;(2)(i)见解析;(ii).【解析】【分析】(1)由频率分布直方图各段中间值乘以各段的概率再相加即为平均值;由频率分布直方图可知“长潜伏者”即潜伏期时间不低于6天的频率,将其乘以样本总量即可;(2)(i)由表格数据合计开始逐层推进,由分层抽样计算数据并求值填表;(ii)列出所有基本事件可能,再由古典概型概率计算公式求解.【详解】(1)平均数. 由频率分布直方图可知“长潜伏者”即潜伏期时间不低于6天的频率为所以500人中“长潜伏者”的人数为人(2)(i)由题意补充后的表格如图:短

20、潜伏者长潜伏者合计60岁及以上907016060岁以下6080140合计150150300由合计值300减去60岁以下的合计140可得60岁以上的合计160;长潜伏者的人数为人,则短潜伏者也为150人;即短潜伏者中60岁以下的人数为150-90=60人,长潜伏者中60岁以上的人数为160-90=70人,60岁以下的人数为150-70=80人.(ii)由分层抽样知7人中,“短潜伏者”有3人,记为,“长潜伏者”有4人,记为D,E,F,G, 从中抽取2人,共有,共有21种不同的结果,两人中恰好有1人为“长潜伏者”包含了12种结果. 所以所求概率.【点睛】本题考查在频率分布直方图中求平均数,由分层抽样

21、完善列联表,还考查了古典概型求概率问题,属于简单题.21. 已知椭圆与过其右焦点F(1,0)的直线交于不同的两点A,B,线段AB的中点为D,且直线l与直线OD的斜率之积为.(1)求C的方程;(2)设椭圆的左顶点为M,kMA,kMB分别表示直线MA,MB的斜率,求证.【答案】(1);(2)证明见解析.【解析】【分析】(1)设A,B的坐标,代入椭圆中,两式相减可得直线AB,OD的斜率之积,由题意可得a,b的关系,再由右焦点的坐标及a,b,c之间的关系求出a,b的值,求出椭圆的方程;(2)由(1)可得M的坐标,将直线l的方程代入椭圆的方程,求出两根之和及两根之积,进而求出直线AM,BM的斜率之和,再

22、由直线AB,OD的斜率之积可证得kAM+kBMkOD.【详解】(1)设A(x1,y1),B(x2,y2),D(x0,y0),将点A,B坐标代入椭圆的方程,两式相减得0,所以kAB,因为D为AB的中点,所以kOD,所以kABkOD,所以,又a2b21,解得:a24,b23,所以椭圆C的方程为:1.(2)由(1)可得左顶点M(2,0),由题意设直线AB的方程:xmy+1,联立直线与椭圆的方程:,整理可得:(4+3m2)y2+6my90,所以y1+y2,y1y2,所以kAM+kBMm,因为kABkODkOD,所以mkOD,即kAM+kBMkOD.【点睛】本题考查求椭圆的方程以及直线与椭圆的综合应用,

23、考查学生的数学运算求解能力,属于中档题.22. 设函数.(1)讨论函数的单调性;(2)若,不等式恒成立,求实数的取值范围.【答案】(1)在区间上是减函数,在区间上是增函数;(2)【解析】【分析】(1)利用导函数的正负讨论函数的单调性;(2)不等式化为,结合(1)的结论,分析函数单调性,讨论函数最值,根据不等式恒成立求参数的取值范围.【详解】解:(1)所以为增函数,又因为所以,当时,;当时,所以,函数在区间上是减函数,在区间上是增函数(2)不等式化为设,由(1)可知是上的增函数,因为,所以,当,函数g(x)在区间上的增函数所以,所以当时符合题意.当,所以存在,使得;并且当;当;所以函数在区间上是减函数,在区间上是增函数最小值为,不等式不恒成立综上,使得命题成立的实数的取值范围是【点睛】此题考查利用导函数讨论函数的单调性,解决不等式恒成立求参数的取值范围,涉及分类讨论.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3