1、微专题45利用等差、等比数列的性质研究基本量问题1.设an是等差数列,若a4a5a621,则S9_.2已知数列an是公差为正数的等差数列,若a1a2a315,且a1a2a380,则a11a12a13_3已知等差数列an的前n项和为Sn,若S1122,则a3a7a8_4已知等比数列an的首项a11,前n项和为Sn,若,则公比q_5在等差数列an中,已知S8100,S16392,则S24的值为_6设Sn是等比数列an的前n项和,若,则_7设Sn为等差数列an(nN*)的前n项和,已知S324,S10S550,求:(1)a1及d的值;(2)Sn的最小值8设Sn为等差数列an的前n项的和,已知a1a2
2、a615,S749.(1)求a3及S5的值;(2)求公差d的取值范围;(3)求证:S864.微专题451答案:63.解析:因为a4a5a63a521,所以a57,所以S99a563.2答案:105.解析:因为a1a2a33a215,所以a25.由a1a2a380,得a1a316,即(a2d)(a2d)16,解得d3(d3舍去),所以a11a12a13a1a2a330d15303105.3答案:6.解析:由S1122得11a622,所以a62,又a3a7a8a4a6a83a66.4答案:.解析:因为,所以S10S5,所以q5,所以q.5答案:876.解法1由S8100,S16392,得8a128
3、d100,16a1120d392.解得a12,d3,所以,S2424a1276d876.解法2由数列an是等差数列,可得S8,S16S8,S24S16也成等差数列,所以,2(S16S8)S8(S24S16),解得S24876.6答案:.解析:由,得S103S5,由S5,S10S5,S15S10,S20S15成等差数列,故S10S52S5,S15S104S5,S20S158S5,所以S157S5,S2015S5,故.7答案:(1)d3,a111;(2)26.解析:(1)由S324,得a28.由S10S550,得a810.所以,a8a26d18.d3.a1a2d11.(2)由(1)可得an3n14.令a0,得n.则an0.所以,n4时,Sn取得最小值为26.8答案:(1)a35,S525;(2)d2;(3)略解析:(1)因为a1a2a615,所以,a1(a1d)(a15d)15.则a12d5.即a35.所以S55a110d5(a12d)25.(2)因为S77a121d49,所以,a13d7.因为a12d5,所以,d2.即公差d的取值范围为2,)(3)因为a8a35d55215,而S749,所以,S8S7a8491564.