收藏 分享(赏)

第二讲 巧添辅助 妙解竞赛题.doc

上传人:高**** 文档编号:1361408 上传时间:2024-06-06 格式:DOC 页数:5 大小:208KB
下载 相关 举报
第二讲 巧添辅助 妙解竞赛题.doc_第1页
第1页 / 共5页
第二讲 巧添辅助 妙解竞赛题.doc_第2页
第2页 / 共5页
第二讲 巧添辅助 妙解竞赛题.doc_第3页
第3页 / 共5页
第二讲 巧添辅助 妙解竞赛题.doc_第4页
第4页 / 共5页
第二讲 巧添辅助 妙解竞赛题.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二讲 巧添辅助 妙解竞赛题 在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题 有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在ABC中,ABAC,D是底边BC上一点,E是线段AD上一点且BED2CEDA.求证:BD2CD.分析:关键是寻求BED2CED与结论的联系.容易想到作BED的平分线,但因BEED,故不能直接证出BD2CD.若

2、延长AD交ABC的外接圆于F,则可得EBEF,从而获取.证明:如图1,延长AD与ABC的外接圆相交于点F,连结CF与BF,则BFABCAABCAFC,即BFDCFD.故BF:CFBD:DC. 又BEFBAC,BFEBCA,从而FBEABCACBBFE.故EBEF. 作BEF的平分线交BF于G,则BGGF. 因GEFBEFCEF,GFECFE,故FEGFEC.从而GFFC. 于是,BF2CF.故BD2CD.1.2 利用四点共圆例2 凸四边形ABCD中,ABC60,BADBCD90, AB2,CD1,对角线AC、BD交于点O,如图2.则sinAOB_.分析:由BADBCD90可知A、B、C、D四点

3、共圆,欲求sinAOB,联想到托勒密定理,只须求出BC、AD即可.解:因BADBCD90,故A、B、C、D四点共圆.延长BA、CD交于P,则ADPABC60. 设ADx,有APx,DP2x.由割线定理得(2x)x2x(12x).解得ADx22,BCBP4. 由托勒密定理有 BDCA(4)(22)211012. 又SABCDSABDSBCD. 故sinAOB.例3 已知:如图3,ABBCCAAD,AHCD于H,CPBC,CP交AH于P.求证:ABC的面积SAPBD. 分析:因SABCBC2ACBC,只须证ACBCAPBD,转化为证APCBCD.这由A、B、C、Q四点共圆易证(Q为BD与AH交点)

4、.证明:记BD与AH交于点Q,则由ACAD,AHCD得ACQADQ. 又ABAD,故ADQABQ. 从而,ABQACQ.可知A、B、C、Q四点共圆. APC90PCHBCD,CBQCAQ, APCBCD. ACBCAPBD. 于是,SACBCAPBD.2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD中,ABCD,ADDCDBp,BCq.求对角线AC的长. 分析:由“ADDCDBp”可知A、B、C在半径为p的

5、D上.利用圆的性质即可找到AC与p、q的关系.解:延长CD交半径为p的D于E点,连结AE.显然A、B、C在D上. ABCD,BCAE. 从而,BCAEq. 在ACE中,CAE90,CE2p,AEq,故 AC.2.2 联想直径的性质构造辅助圆例5 已知抛物线yx22x8与x轴交于B、C两点,点D平分BC.若在x轴上侧的A点为抛物线上的动点,且BAC为锐角,则AD的取值范围是_.分析:由“BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围,进而确定AD的取值范围.解:如图5,所给抛物线的顶点为A0(1,9),对称轴为x1,与x轴交于两点B(2,0)、C(4,

6、0). 分别以BC、DA为直径作D、E,则两圆与抛物线均交于两点P(12,1)、Q(12,1). 可知,点A在不含端点的抛物线PA0Q内时,BAC90.且有3DPDQADDA09,即AD的取值范围是3AD9.2.3 联想圆幂定理构造辅助圆例6 AD是RtABC斜边BC上的高,B的平行线交AD于M,交AC于N.求证:AB2AN2BMBN.分析:因AB2AN2(ABAN)(ABAN)BMBN,而由题设易知AMAN,联想割线定理,构造辅助圆即可证得结论.证明:如图6, 234590,又34,15,12.从而,AMAN. 以AM长为半径作A,交AB于F,交BA的延长线于E.则AEAFAN. 由割线定理

7、有 BMBNBFBE (ABAE)(ABAF) (ABAN)(ABAN) AB2AN2,即 AB2AN2BMBN.例7 如图7,ABCD是O的内接四边形,延长AB和DC相交于E,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切O于P、Q.求证:EP2FQ2EF2.分析:因EP和FQ是O的切线,由结论联想到切割线定理,构造辅助圆使EP、FQ向EF转化.证明:如图7,作BCE的外接圆交EF于G,连结CG.因FDCABCCGE,故F、D、C、G四点共圆.由切割线定理,有EF2(EGGF)EF EGEFGFEF ECEDFCFBECEDFCFBEP2FQ2,即 EP2FQ2EF2.2.

8、4 联想托勒密定理构造辅助圆例8 如图8,ABC与ABC的三边分别为a、b、c与a、b、c,且BB,AA180.试证:aabbcc. 分析:因BB,AA180,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作ABC的外接圆,过C作CDAB交圆于D,连结AD和BD,如图9所示. AA180AD, BCDBB, AD,BBCD. ABCDCB. 有, 即 . 故DC,DB. 又ABDC,可知BDACb,BCADa. 从而,由托勒密定理,得 ADBCABDCACBD,即 a2cb. 故aabbcc.练习题1. 作一个辅助圆证明:ABC中,若AD平分A,则.(提示:不妨设ABAC,作ADC的

9、外接圆交AB于E,证ABCDBE,从而.)2. 已知凸五边形ABCDE中,BAE3a,BCCDDE,BCDCDE1802a.求证:BACCADDAE.(提示:由已知证明BCEBDE1803a,从而A、B、C、D、E共圆,得BACCADDAE.)3. 在ABC中ABBC,ABC20,在AB边上取一点M,使BMAC.求AMC的度数.(提示:以BC为边在ABC外作正KBC,连结KM,证B、M、C共圆,从而BCMBKM10,得AMC30.)4如图10,AC是ABCD较长的对角线,过C作CFAF,CEAE.求证:ABAEADAFAC2. (提示:分别以BC和CD为直径作圆交AC于点G、H.则CGAH,由割线定理可证得结论.)5. 如图11.已知O1和O2相交于A、B,直线CD过A交O1和O2于C、D,且ACAD,EC、ED分别切两圆于C、D.求证:AC2ABAE.(提示:作BCD的外接圆O3,延长BA交O3于F,证E在O3上,得ACEADF,从而AEAF,由相交弦定理即得结论.)6已知E是ABC的外接圆之劣弧BC的中点.求证:ABACAE2BE2. (提示:以BE为半径作辅助圆E,交AE及其延长线于N、M,由ANCABM证ABACANAM.)7. 若正五边形ABCDE的边长为a,对角线长为b,试证:1.(提示:证b2a2ab,联想托勒密定理作出五边形的外接圆即可证得.)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3