收藏 分享(赏)

2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx

上传人:高**** 文档编号:1360369 上传时间:2024-06-06 格式:DOCX 页数:39 大小:5.26MB
下载 相关 举报
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第1页
第1页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第2页
第2页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第3页
第3页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第4页
第4页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第5页
第5页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第6页
第6页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第7页
第7页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第8页
第8页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第9页
第9页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第10页
第10页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第11页
第11页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第12页
第12页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第13页
第13页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第14页
第14页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第15页
第15页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第16页
第16页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第17页
第17页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第18页
第18页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第19页
第19页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第20页
第20页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第21页
第21页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第22页
第22页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第23页
第23页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第24页
第24页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第25页
第25页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第26页
第26页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第27页
第27页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第28页
第28页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第29页
第29页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第30页
第30页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第31页
第31页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第32页
第32页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第33页
第33页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第34页
第34页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第35页
第35页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第36页
第36页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第37页
第37页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第38页
第38页 / 共39页
2023届高考数学二轮复习 专题06 数学情景与新文化100题(学生版).docx_第39页
第39页 / 共39页
亲,该文档总共39页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题06 数学情景与新文化100题类型一:函数类新文化题型一、单选题15G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干挠的信道中,最大信息传递速率取决于信道带宽、信道内信号的平均功率、信道内部的高斯噪声功率的大小,其中叫做信噪比.按照香农公式,若不改变带宽,而将信噪比从1000提升至2000,则大约增加了( )A10%B30%C50%D100%22020年11月24日4时30分,我国在文昌航天发射场用长征五号运载火箭成功发射嫦娥五号,12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,“绕、落、回”三步探月规划完美收官,这为我国未来月球与行星探测奠定了坚

2、实基础已知在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,称为“总质比”若型火箭的喷流相对速度为,当总质比为500时,型火箭的最大速度约为(,)( )ABCD3埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230

3、米因年久风化,顶端剥落10米,则胡夫金字塔现高大约为A128.5米B132.5米C136.5米D110.5米4中国的5G技术领先世界,5G技术极大地提高了数据传输速率,最大数据传输速率C取决于信道带宽W,经科学研究表明:C与W满足,其中S是信道内信号的平均功率,N是信道内部的高斯噪声功率,为信噪比.当信噪比比较大时,上式中真数中的1可以忽略不计.若不改变带宽W,而将信噪比从1000提升至4000,则C大约增加了( )(附:)A10%B20%C30%D40%5中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道

4、内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()( )A10%B30%C60%D90%62020年11月24日4时30分,长征五号途五运载火箭在我国文昌航天发射场成功发射,飞行约2200秒后,顺利将探月工程嫦娥五号探测器送人预定轨道,开启我国首次地外天体采样返回之旅.已知火箭的最大速度单位与燃料质量(单位)火箭质量单位的函数关系为,若已知火箭的质共为火箭的最大速度为则火箭需要加注的燃料为(参考数值为结果精确到0.01( )A243.69B244.

5、69CD7意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线直到1690年,雅各布伯努利正式提出该问题为“悬链线”问题并向数学界征求答案1691年他的弟弟约翰伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式双曲余弦函数:(为自然对数的底数)当,时,记,则,的大小关系为( )ABCD8著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则后物体的温度(单位:)满足:(其中k为常数,)现有某物体放在20的空气中冷却,后测得物体的温度为52,再经过后物体的温度冷却到24,则该物体初始温度是( )A80B82C84D8692018年

6、9月24日,阿贝尔奖和菲尔兹奖双料得主,英国89岁高龄的著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动在1859年,德国数学家黎曼向科学院提交了题目为论小于某值的素数个数的论文并提出了一个命题,也就是著名的黎曼猜想在此之前著名的数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论若根据欧拉得出的结论,估计10000以内的素数个数为(素数即质数,计算结果取整数)A1089B1086C434D145102020年6月17日15时19分,星期三,酒泉卫星发射中心,我国成功发射长征二号丁运载火箭,并成功将高分九号03星、皮星三号A星和德五号卫星送入预定轨道

7、,携三星入轨,全程发射获得圆满成功,祖国威武.已知火箭的最大速度v(单位:)和燃料质量M(单位:),火箭质量m(单位:)的函数关系是:,若已知火箭的质量为3100公斤,燃料质量为310吨,则此时v的值为多少(参考数值为;)( )A13.8B9240C9.24D138011为了研究疫情有关指标的变化,现有学者给出了如下的模型:假定初始时刻的病例数为N0,平均每个病人可传染给K个人,平均每个病人可以直接传染给其他人的时间为L天,在L天之内,病例数目的增长随时间t(单位:天)的关系式为N(t)=N0(1+K)t,若N0=2,K=2.4,则利用此模型预测第5天的病例数大约为( )(参考数据:log1.

8、445418,log2.44547,log3.44545)A260B580C910D120012干支纪年法是中国历法上自古以来就一直使用的纪年方法、干支是天干和地支的总称,甲、乙、丙、丁、戊、己、庚、辛、壬、癸为天干:子、丑、寅、卯、辰、已、午、未,申、西、戌、亥为地支.把十天干和十二地支依次相配,如甲对子、乙对丑、丙对寅、癸对寅,其中天干比地支少两位,所以天干先循环,甲对戊、乙对亥、接下来地支循环,丙对子、丁对丑、.,以此用来纪年,今年2020年是庚子年,那么中华人民共和国建国100周年即2049年是( )A戊辰年B己巳年C庚午年D庚子年132020年初,新冠病毒肺炎(COVID19)疫情在

9、武汉爆发,并以极快的速度在全国传播开来因该病毒暂无临床特效药可用,因此防控难度极大湖北某地防疫防控部门决定进行全面入户排查4类人员:新冠患者、疑似患者、普通感冒发热者和新冠密切接触者,过程中排查到一户5口之家被确认为新冠肺炎密切接触者,按要求进一步对该5名成员逐一进行核糖核酸检测,若出现阳性,则该家庭定义为“感染高危户”,设该家庭每个成员检测呈阳性的概率相同均为,且相互独立,该家庭至少检测了4人才能确定为“感染高危户”的概率为,当时,最大,此时( )ABCD14复兴号动车组列车,是中国标准动车组的中文命名,由中国铁路总公司牵头组织研制、具有完全自主知识产权、达到世界先进水平的动车组列车.201

10、9年12月30日,智能复兴号动车组在京张高铁实现时速自动驾驶,不仅速度比普通列车快,而且车内噪声更小.我们用声强(单位:表示声音在传播途径中每平方米上的声能流密度,声强级(单位:与声强的函数关系式为,已知时,.若要将某列车的声强级降低,则该列车的声强应变为原声强的( )A倍B倍C倍D倍15高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,也称取整函数,如:,已知,则函数的值域为( )ABCD16我国于2021年5月成功研制出目前国际上超导量子比特数量最多的量子计算原型机“祖冲之号”,操控的超导量子比特为

11、62个.已知1个超导量子比特共有“,”2种叠加态,2个超导量子比特共有“,”4种叠加态,3个超导量子比特共有“,”8种叠加态,只要增加1个超导量子比特,其叠加态的种数就呈指数级增长.设62个超导量子比特共有种叠加态,则是一个( )位的数.(参考数据:)A18B19C62D63172019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行点是平衡点,位于地月连线的延长线上设地球质量为M,月球质量为M,地月距

12、离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为ABCD18中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪音干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,若带宽W增大到原来的1.1倍,信噪比从1000提升到16000,则C大约增加了(附:)( )A21%B32%C43%D54%有“数学王子”的美誉,用其名字命名的“高斯函数”为:设,用表示不超过的

13、最大整数,则称为高斯函数,也称取整函数,如:,已知,则函数的值域为( )ABCD202020年第三届中国国际进口博览会开幕,时值初冬呼吸系统传染病高发期,防疫检测由上海交通大学附属瑞金医院与上海联通公司合作研发的“5G发热门诊智慧解决方案”完成.该方案基于5G网络技术实现了患者体温检测、人证核验、导诊、诊疗、药品与标本配送的无人化和智能化.5G技术中数学原理之一就是香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度(单位:)取决于信道带宽(单位:)、信道内信号的平均功率(单位:)、信道内部的高斯噪声功率(单位:)的大小,其中叫做信噪比.按照香农公式,若不改变带宽,而将信噪比从1000提

14、升至2000,则大约是原来的( )A2倍B1.1倍C0.9倍D0.5倍类型二:三角形类新文化题型21掷铁饼者取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为( )A1.012米B1.768米C2.043米D2.945米22达芬奇的经典之作蒙娜丽莎举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者人迷.某业余爱好者对蒙娜丽莎的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆

15、弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将蒙娜丽莎中女子的嘴唇视作的圆弧对应的圆心角大约等于( )ABCD23九章算术成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A135平方米B270平方米C540平方米D1080平方米24希波克拉底是古希腊医学家,他被西方尊为“医学之父”,除了医学,他也研究数学.特别是与“月牙形”有关的问题.如图所示.阴影部分的月牙形的边缘都是圆弧,两段圆弧分别是的外接圆和

16、以为直径的圆的一部分,若,则该月牙形的面积为( )ABCD25故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴已知北京地区夏至前后正午太阳高度角约为,冬至前后正午太阳高度角约为图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐的长度(单位:米)约为( )A3B4CD26东寺塔与西寺塔为“昆明八景”之一,两塔一西一东,遥遥相对,已有1100多年历史东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称如图,在A点测得:塔在北偏东30的点处,塔顶的仰角为30,且

17、点在北偏东60相距80(单位:),在点测得塔在北偏西60,则塔的高度约为( )A69B40C35D2327三国时期,吴国数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”).如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积与大正方形面积之比为,则( )ABCD28“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,为的一个靠近点的三等分点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概

18、率是( )ABCD29我国魏晋时期著名的数学家刘徽在九章算术注中提出了“割圆术割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体而无所失矣”.也就是利用圆的内接多边形逐步逼近圆的方法来近似计算圆的面积.如图的半径为1,用圆的内接正六边形近似估计,则的面积近似为,若我们运用割圆术的思想进一步得到圆的内接正二十四边形,以此估计,的面积近似为( )ABCD30筒车是我们古代发明的一种水利灌溉工具,明朝科学家徐光启在农政全书中用图画描绘了筒车的工作原理,如图所示,已知筒车的半径为,筒车转轮的中心到水面的距离为,筒车沿逆时针方向以角速度转动,规定:盛水筒对应的点从水中浮现(即时的位置)时开始计算时间

19、,且以水轮的圆心为坐标原点,过点的水平直线为轴建立平面直角坐标系,设盛水筒从点运动到点时经过的时间为(单位:),且此时点距离水面的高度为(单位:米),筒车经过第一次到达最高点,则下列叙述正确的是( ) A当时,点与点重合B当时,一直在增大C当时,盛水筒有次经过水平面D当时,点在最低点31我国南宋著名数学家秦九韶在他的著作数书九章卷五“田域类”里有一个题目:“问有沙田一段,有三斜其小斜一十三里,中斜一十四里,大斜一十五里里法三百步欲知为田几何”题意是有一个三角形的沙田,其三边长分别为13里、14里、15里、1里为300步,设6尺为1步,1尺0.231米,则该沙田的面积约为( )(结果精确到0.1

20、,参考数据:)A15.6平方千米B152平方千米C14.8平方千米D14.5平方千米32第41届世界博览会于2010年5月1日至10月31日,在中国上海举行,气势磅礴的中国馆“东方之冠”令人印象深刻,该馆以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为设计理念,代表中国文化的精神与气质其形如冠盖,层叠出挑,制似斗拱它有四根高33.3米的方柱,托起斗状的主体建筑,总高度为60.3米,上方的“斗冠”类似一个倒置的正四棱台,上底面边长是139.4米,下底面边长是69.9米,则“斗冠”的侧面与上底面的夹角约为( )ABCD332020年3月14日是全球首个国际圆周率日( Day)历史上,求圆周率的方法有

21、多种,与中国传统数学中的“割圆术”相似数学家阿尔卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值按照阿尔卡西的方法,的近似值的表达式是( )ABCD34魏晋时刘徽撰写的海岛算经是有关测量的数学著作,其中第一题是测海岛的高如图,点,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )A表高B表高C表距D表距35“欲穷千里目,更上一层楼”出自唐朝诗人王之涣的登鹳雀楼,鹳雀楼位于今山西永济市,该楼有三层,前对中条山,下临黄

22、河,传说常有鹳雀在此停留,故有此名下面是复建的鹳雀楼的示意图,某位游客(身高忽略不计)从地面点看楼顶点的仰角为30,沿直线前进79米到达点,此时看点的仰角为45,若,则楼高约为( )A65米B74米C83米D92米36小李在某大学测绘专业学习,节日回家,来到村头的一个池塘(如图阴影部分),为了测量该池塘两侧,两点间的距离,除了观测点,外,他又选了两个观测点,且,已经测得两个角,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出,间距离的是( )和;和;和.A和B和C和D和和类型三:向量类新文化题型37窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民

23、间艺术之一每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形的边长为,圆的圆心为正六边形的中心,半径为,若点在正六边形的边上运动,为圆的直径,则的取值范围是( )ABCD38庄严美丽的国旗和国徽上的五角星是革命和光明的象征,正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系.在如图所示的正五角星中,以为顶点的多边形为正五边形,且,则( )ABCD39下面图1是某晶体的阴阳离子单层排列的平面示意图.其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都

24、相切,A,B,C,D是其中四个圆的圆心,则( )A32B28C26D2440“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形中,满足“勾3股4弦5”,且,为上一点,.若,则的值为( )ABCD41庄严美丽的国旗和国徽上的五角星是革命和光明的象征,正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以为顶点的多边形为正五边形,且.下列关系中正确的是ABCD42“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦

25、5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BEAC.若=+,则+的值为( )ABCD143我国东汉末数学家赵爽在周牌算经中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示若为的中点,则( )ABCD44图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成个大的正方形,某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若,那么( )

26、A2BC6D45我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为周髀算经作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形是由4个全等的直角三角形和中间的小正方形组成的,若,为的中点,则( )ABCD46古代中国的太极八卦图是以圆内的圆心为界,画出相同的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八边形)是由图1(八卦模型图)抽象而得到,并

27、建立如图2的平面直角坐标系,设.则下列错误的结论是( )AB以射线为终边的角的集合可以表示为C在以点为圆心、为半径的圆中,弦所对的劣弧弧长为D正八边形的面积为47瑞典人科赫提出了著名的“雪花”曲线,这是一种分形曲线,它的分形过程是:从一个正三角形(如图)开始,把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段,这样就得到一个六角形(如图),所得六角形共有12条边.再把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段.反复进行这一分形,就会得到一个“雪花”样子的曲线,这样的曲线叫作科赫曲线或“雪花”曲线.已知点O是六角形

28、的对称中心,A,B是六角形的两个顶点,动点P在六角形上(内部以及边界).若,则的取值范围是( )ABCD482000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比,黄金分割比为其实有关“黄金分割”,我国也有记载,虽然没有古希腊的早,但它是我国古代数学家独立创造的如图,在矩形ABCD中,AC,BD相交于点O,BFAC,DHAC,AEBD,CGBD,则( )ABCD49最早发现勾股定理的人是我国西周数学家商高,商高比毕达哥拉斯早500多年发现勾股定理,如图所示,满足“勾三股四弦五”,其

29、中股,为弦上一点(不含端点),且满足勾股定理,则( )ABCD50我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,它由四个全等的直角三角形和一个正方形所构成(如图),后人称其为“赵爽弦图”.在直角三角形中,已知,在线段上任取一点,线段上任取一点,则的最大值为( )A25B27C29D3151早在公元前十一世纪,周朝数学家商高就提出“勾三股四弦五”,周髀算经中曾有记载,大意为:“当直角三角形的两条直角边分别为(勾)和(股)时,径隅(弦)则为”,故勾股定理也称为商高定理.现有的三边满足“勾三股四弦五”,其中勾的长为,点在弦上的射影为点,则( )ABCD52据九章算术记载,商高是我国西周时期

30、的数学家,曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有满足“勾3股4弦5”,其中,点是延长线上的一点,则=( )A3B4C9D不能确定类型四:数列类新文化题型53北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A3699块B3474块C3402块D3339块54“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计

31、算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为ABCD55九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为A钱B钱C钱D钱57九章算术“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成

32、等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为A1升B升C升D升58九章算术是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为A13B14C15D16590-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是( )ABCD60算法统宗是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数

33、学知识起到了很大的作用,是东方古代数学的名著在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推在这个问题中,这位公公的长儿的年龄为( )A岁B岁C岁D岁61周髀算经是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,生数皆终,万物复苏,天以更元作纪历”,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90至100),其余19人的年龄依次相

34、差一岁,则年长者的年龄为A94B95C96D9862周髀算经中有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分.清明、谷雨、立夏、小满、芒种,这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为尺,前九个节气日影长之和为尺,则谷雨日影长为( )ABCD63九章算术是我国古代的数学巨著,书中有这样一道题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺,大鼠日自倍,小鼠日自半.问何日相逢?”题意为:有一堵墙厚五尺,有两只老鼠从墙的正对面打洞穿墙.大老鼠第一天打进一尺,以后每天打进的长度是前一天的倍;小老鼠第一天也打进一尺,以后每天打进的长度是前一天的一半.若

35、这一堵墙厚尺,则几日后两鼠相逢( )ABCD64我国古代数学典籍九章算术第七章“盈不足”章中有一道“两鼠穿墙”问题:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问两鼠在第几天相遇?A第2天B第3天C第4天D第5天65在数学发展史上,已知各除数及其对应的余数,求适合条件的被除数,这类问题统称为剩余问题.年孙子算经中“物不知其数”问题的解法传至欧洲,在西方的数学史上将“物不知其数”问题的解法称之为“中国剩余定理”.“物不知其数”问题后经秦九韶推广,得到了一个普遍的解法,提升了“中国剩余定理”的高度.现有一个剩余问题:在的整数

36、中,把被除余数为,被除余数也为的数,按照由小到大的顺序排列,得到数列,则数列的项数为( )ABCD66英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列满足,则称数列为牛顿数列如果函数,数列为牛顿数列,设且, 数列的前项和为,则( )ABCD67我国古代著名的数学专著九章算术里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( )ABCD68中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之栗五斗羊主曰:“我羊食

37、半马”马主曰:“我马食半牛”今欲哀偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗的主人要求赔偿5斗栗羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还栗a升,b升,c升,1斗为10升,则下列判断正确的是Aa,b,c依次成公比为2的等比数列,且Ba,b,c依次成公比为2的等比数列,且Ca,b,c依次成公比为的等比数列,且Da,b,c依次成公比为的等比数列,且类型五:几何类新文化题型69埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积

38、等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )ABCD70日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40,则晷针与点A处的水平面所成角为( )A20B40C50D9071(2015新课标全国I理科)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:

39、“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A14斛B22斛C36斛D66斛72北斗三号全球卫星导航系统是我国航天事业的重要成果在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离)将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比

40、约为( )A26%B34%C42%D50%73祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式,其中是柱体的底面积,是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A158B162C182D3274某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:)24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h降雨量的等级是A

41、小雨B中雨C大雨D暴雨75攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )ABCD76九章算术是我国古代第一部数学专著,它有如下问题:“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?”意思是“今有圆柱体形的土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少?”(注:1丈=10尺,取)A704立方尺B2112立方尺C2115立方尺D2118立方

42、尺77某班科技兴趣小组研究在学校的图书馆顶上安装太阳能板的发电量问题,要测量顶部的面积,将图书馆看成是一个长方体与一个等底的正四棱锥组合而成,经测量长方体的底面正方形的的边长为26米,高为9米,当正四棱锥的顶点在阳光照射下的影子恰好落在底面正方形的对角线的延长线上时,测的光线与底面夹角为,正四棱锥顶点的影子到长方体下底面最近顶点的距离为11.8米,则图书馆顶部的面积大约为( )平方米(注:)ABCD78牙雕套球又称“鬼工球”,取鬼斧神工的意思,制作相当繁复,工艺要求极高.明代曹昭在格古要论珍奇鬼工毬中写道:“尝有象牙圆毬儿一箇,中直通一窍,内车数重,皆可转动,故谓之鬼工毬”.现有某“鬼工球”,

43、由外及里是两层表面积分别为和的同心球(球壁的厚度忽略不计),在外球表面上有一点,在内球表面上有一点,连接线段.若线段不穿过小球内部,则线段长度的最大值是( )AcmB9cmC3cmD2cm79“中国天眼”是我国具有自主知识产权,世界最大单口径,最灵敏的球面射电望远镜(如图)其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,球冠面积,其中R为球的半径,h为球冠的高)设球冠底的半径为r,周长为C,球冠的面积为S,则当时,( )ABCD80攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如

44、图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为,则侧棱与底面内切圆半径的比为( )ABCD81古希腊数学家阿基米徳的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形是阿基米德最引以为豪的发现.现有一底面半径与高的比值为的圆柱,则该圆柱的表面积与其内切球的表面积之比为( )ABCD82九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?

45、”若以上的条件不变,则这个四棱锥的外接球的表面积为A平方尺B平方尺C平方尺D平方尺83九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为ABCD84九章算术是我国古代内容极为丰富的数学名著,书中商功有如下问题:“今有委粟平地,下周一十二丈,高一丈,问积为粟几何?”,意思是“有粟若干,堆积在平地上,它底圆周长为12丈,高为1丈,问它的体积和粟各为多少?”如图,主人意欲卖掉该堆粟,已知圆周率约为3,一斛粟的体积约为2700立方寸(单位换算:1立方丈立方寸),一斛粟米卖270

46、钱,一两银子1000钱,则主人卖后可得银子( )A200两B240两C360两D400两类型六:概率类新文化题型85我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是ABCD86我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是ABCD87如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中

47、心对称,在正方形内随机取一点,则此点取自黑色部分的概率是ABCD88如图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,ACABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则Ap1=p2Bp1=p3Cp2=p3Dp1=p2+p389我国古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A134石B169石C338石D136

48、5石90如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为ABCD91中国古代的五经是指:诗经、尚书、礼记、周易、春秋,甲、乙、丙、丁、戊名同学分别选取了其中一本不同的书作为课外兴趣研读,若甲乙都没有选诗经,乙也没选春秋,则名同学所有可能的选择有A种B种C种D种92赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个

49、全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是ABCD93如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为( )A30B40C44D7094杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列在我国南宋数学家杨辉所著的详解九章算法(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律

50、现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1记作数列,若数列的前n项和为,则A265B521C1034D205995重庆奉节县柑橘栽培始于汉代,历史悠久.奉节脐橙果皮中厚脆而易剥,酸甜适度,汁多爽口,余味清香,荣获农业部优质水果中国国际农业博览会金奖等荣誉.据统计,奉节脐橙的果实横径(单位:)服从正态分布,则果实横径在的概率为( )附:若,则;.A0.6827B0.8413C0.8186D0.954596部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统分形几何

51、学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形若在图中随机选取点,则此点取自阴影部分的概率为( )ABCD97算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的数术记遗,其中有云:“珠算控带四时,经纬三才.”

52、北周甄鸾为此作注,大意是:把木板刻为部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、,上面一粒珠(简称上珠)代表,下面一粒珠(简称下珠)是,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨粒下珠,算盘表示的数为质数(除了和本身没有其它的约数)的概率是( )ABCD98五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概

53、率为ABCD99圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为ABCD100“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号,如图是折扇的示意图,为的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )ABCD

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3