ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.25MB ,
资源ID:1360002      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1360002-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江西省景德镇一中2018-2019学年高一数学下学期期中试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江西省景德镇一中2018-2019学年高一数学下学期期中试题(含解析).doc

1、江西省景德镇一中2018-2019学年高一数学下学期期中试题(含解析)一、选择题(本大题共12小题,共60.0分)1.已知,则=()A. B. C. D. 【答案】B【解析】【分析】直接运用向量坐标运算公式,求出的值.【详解】因为,所以,故本题选B.【点睛】本题考查了向量的坐标运算,考查了运算能力.2.已知sin 2,则cos2 ()A. B. C. D. 【答案】A【解析】,故选A3.如图,用向量,表示向量为( )A. B. C. D. 【答案】C【解析】由图可知,所以向量,故选C.4.已知,其中,且,则向量和的夹角是( )A. B. C. D. 【答案】B【解析】试题分析:由题意知,所以,

2、设与的夹角为,则,故选B考点:1、向量的概念;2、向量的数量积5.若函数,又,且的最小值为,则的值为A. B. C. D. 2【答案】A【解析】,因为的最小值为,所以,所以,故选A6.以原点O及点A(5,2)为顶点作等腰直角三角形OAB,使A=90,则的坐标为()A. B. 或C. D. 或【答案】B【解析】【分析】设出点的坐标,求出向量的坐标表示,利用,求出点的坐标,进而求出的坐标表示.【详解】设,因为三角形OAB是等腰直角三角形,且,所以,即,解方程组得或所以或,故本题选B.【点睛】本题考查了向量坐标表示,考查了等腰三角形的性质,以及平面向量数量积的应用,向量模的计算公式.7.的值是( )

3、A. B. C. D. 【答案】C【解析】试题分析:,选C.考点:三角函数恒等变换8.已知等边边长为4,为其内一点,且,则的面积为 ( )A. B. C. D. 【答案】B【解析】,如图所示,延长到点,使得,分别以为邻边作平行四边形,则,又,可得,故选B.点睛:本题考查了平面向量的应用问题,解题的关键是作出辅助线,根据向量的知识得出各小三角形与原三角形面积之间的关系,是中档题;根据题意,作出图形,利用向量的关系,求出与的面积关系,即可得出.9.已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4【答案】C【解析】因为,由

4、于圆的半径为,是圆的一条直径,所以,又,所以 ,所以,当时,故的最小值为,故选C10.在中,是的中点,则等于( )A. B. C. D. 【答案】B【解析】设 ,则 选B.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.11.函数(,)的部分图象如图所示,将函数的图象向右平移个单位后得到函数的图象,若函数在区间()上的值域为,则等于(

5、)A. B. C. D. 【答案】B【解析】由图像可知,所以。,当(),因为值域里有,所以,选B.点睛】本题学生容易经验性的认为,但此时在内无解。所以。已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求。12.定义在上的函数满足,当时, ,则下列不等式一定不成立的是( )A. B. C. D. 【答案】A【解析】函数的周期为, 当时, 时, ,故函数在上是增函数, 时, ,故函数在上是减函数,且关于 轴对称,又定义在上的满足,故函数的周期是,所以函数在上是增函数,在上是减函数,且关于 轴对称,观察四个选项选项中 ,故选A.二、填空题

6、(本大题共4小题,共20.0分)13.已知向量,且,那么实数m的值为_【答案】2【解析】【分析】先把向量坐标表示求出,然后利用两向量平行时,坐标之间的关系,列出等式,求出实数m的值.【详解】因为向量,所以,又因为,所以.【点睛】本题考查了平面向量的坐标运算,以及由两平面向量共线,求参数问题.14.在中, 分别为角对边,则的形状为_ 【答案】等腰三角形【解析】在ABC中,b=c.ABC为等腰三角形。15.如图,一栋建筑物AB高(30-10)m,在该建筑物的正东方向有一个通信塔CD在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15和60,在楼顶A处测得对塔顶C的仰角为3

7、0,则通信塔CD的高为_m【答案】60【解析】【分析】由已知可以求出、的大小,在中,利用锐角三角函数,可以求出.在中,运用正弦定理,可以求出.在中,利用锐角三角函数,求出.【详解】由题意可知:,由三角形内角和定理可知.在中,.在中,由正弦定理可知:,在中,.【点睛】本题考查了锐角三角函数、正弦定理,考查了数学运算能力.16.已知函数与直线相交,若在轴右侧的交点自左向右依次记为,则_【答案】【解析】,当时,或,则或,点,所以 。点睛:本题主要考查诱导公式和三角函数求值,属于中档题。本题关键是求出点 的坐标。三、解答题(本大题共6小题,共70.0分)17.已知向量,().(1)若的夹角为锐角,求的

8、范围;(2)当时,求的值.【答案】(1);(2).【解析】试题分析:(1)本问主要考查向量数量积的定义,当向量夹角为锐角时,但是不同向共线,于是可以求出的范围;(2)本问主要考查向量的坐标运算,根据条件,于是可得,根据向量想等可知,于是可以求出实数的值,即可得的值.试题解析:(1)若的夹角为锐角,则且不共线.,当时,共线,(2),.考点:1.数量积的定义;2.平面向量的坐标运算.18.在中,设内角的对边分别是,,且(1)求角的大小;(2)若,且,求的面积。【答案】(1);(2)16.【解析】试题分析:(1)先计算的坐标,由得关于的方程,再利用辅助角公式化为,则,然后根据,得范围,从而求值,进而

9、确定;(2)在中,确定,另外两边的关系确定,所以利用余弦定理列方程求,再利用求面积.试题解析:(1)又因为,故,;(2)由余弦定理得,即,解得,.考点:1、向量的模;2、向量运算的坐标表示;3、余弦定理.19.已知函数,求(1)求的最小正周期;(2)求函数的单调递增区间(3)求在区间上的最大值和最小值.【答案】(1);(2)单调递增区间为;(3),.【解析】试题分析:(1)由和差角公式及二倍角公式化简得:,进而得最小正周期;(2)由可得增区间;(3)由得,根据正弦函数的图象可得最值.试题解析:(1) .的最小正周期.(2)由 解得函数单调递增区间为 (3) 当时, 当时,.点睛:三角函数式的化

10、简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.20.在ABC中,内角A,B,C所对的边分别为a,b,c,cosB()若c2a,求的值;()若CB,求sinA的值【答案】(1)(2)【解析】试题分析:(1)由余弦定理及得出b,c关系,再利用正弦定理即可求出;(2)根据正余弦的二倍角公式及同角三角函数之间的关系,即可解出.试题解析:(1)解法1:在中,因为,

11、所以.因为,所以,即,所以.又由正弦定理得,所以.解法2:因为,所以.因为,由正弦定理得,所以,即.又因为,解得,所以.(2)因为,所以.又,所以,所以.因为,即,所以,所以试题点睛:解决此类问题的关键是熟练掌握同角三角函数的基本关系与两角和的正弦公式,以及三角形中角之间的关系21.已知向量,函数,函数f(x)在y轴上的截距为,与y轴最近的最高点的坐标是(1)求函数f(x)解析式;(2)将函数f(x)的图象向左平移(0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sinx的图象,求的最小值【答案】();()【解析】试题分析:(1)由平面向量数量积的运算,三角函数中的

12、恒等变换应用可得,由点 在函数图象上,可解得a,又由题意点在函数图象上,代入可解得b,即可求得函数f(x)的解析式;(2)由已知及(1)可求出平移之后的函数解析式,最终可求出的最小值.试题解析:(),由,得,此时,由,得或,当时,经检验为最高点;当时,经检验不是最高点故函数的解析式为()函数的图象向左平移个单位后得到函数的图象,横坐标伸长到原来的2倍后得到函数的图象,所以(),(),因为,所以的最小值为22.如图所示,某公路AB一侧有一块空地OAB,其中OA=3km,OB=3km,AOB=90当地政府拟在中间开挖一个人工湖OMN,其中M,N都在边AB上(M,N不与A,B重合,M在A,N之间),

13、且MON=30(1)若M在距离A点2km处,求点M,N之间的距离;(2)为节省投入资金,人工湖OMN的面积要尽可能小试确定M的位置,使OMN的面积最小,并求出最小面积【答案】(1);(2)【解析】分析】(1)在OAB,根据OA=3km,OB=3km,AOB=90,可以求出,在OAM中,运用余弦定理,求出, 在OAN中,可以求出,在OMN中,运用正弦定理求出;(2)解法1:在OAM中,由余弦定理可以求出的表达式, 的表达式,在OAN中,可以求出的表达式,运用正弦定理求出,运用面积求出的表达式,运用换元法、运用基本不等式,求出的最小值;解法2:设AOM=,0,在OAM中,由正弦定理得OM的表达式在

14、OAN中,由正弦定理得ON的表达式利用面积公式可得出,化简整理求最值即可【详解】(1)在OAB中,因为OA=3,OB=3,AOB=90,所以OAB=60在OAM中,由余弦定理得OM2=AO2+AM2-2AOAMcosA=7,所以OM=,所以cosAOM=,在OAN中,sinONA=sin(A+AON)=sin(AOM+90)=cosAOM=在OMN中,由=,得MN=(2)解法1:设AM=x,0x3在OAM中,由余弦定理得OM2=AO2+AM2-2AOAMcosA=x2-3x+9,所以OM=,所以=,在OAN中,sinONA=sin(A+AON)=sin(AOM+90)=cosAOM=由=,得所

15、以SOMN=OMONsinMON=,(0x3)令6-x=t,则x=6-t,3t6,则SOMN=(t-9+)(2-9)=当且仅当t=,即t=3,x=6-3时等号成立,SOMN的最小值为所以M的位置为距离A点6-3km处,可使OMN的面积最小,最小面积是km2解法2:设AOM=,0在OAM中,由=,得OM=在OAN中,由=,得ON=所以SOMN=OMONsinMON=,(0)当2+=,即=时,SOMN的最小值为所以应设计AOM=,可使OMN的面积最小,最小面积是km2【点睛】本题考查的知识要点:正弦定理的应用,余弦定理的应用,三角形面积公式的应用,正弦型函数的性质的应用,基本不等式的应用及相关的运算问题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3