ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:41.94KB ,
资源ID:1352908      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1352908-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学 第二章 圆锥曲线与方程测评(含解析)北师大版选修1-1.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学 第二章 圆锥曲线与方程测评(含解析)北师大版选修1-1.docx

1、第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知椭圆=1(ab0)分别过点A(2,0)和B(0,-1),则该椭圆的焦距为()A.B.2C.D.2答案B解析由题意可得a=2,b=1,所以a2=4,b2=1,所以c=,所以2c=2.故选B.2.平面上有两个定点A,B及动点P,命题甲:“|PA|-|PB|是定值”,命题乙:“点P的轨迹是以A,B为焦点的双曲线”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当|PA|-|PB|=|AB|时,点P的轨迹是一条射线,故甲乙,而乙甲,故选B.3.已知椭

2、圆与双曲线=1有共同的焦点,且离心率为,则椭圆的标准方程为()A.=1B.=1C.=1D.=1答案B解析双曲线=1中,=3,=2,则c1=,故焦点坐标为(-,0),(,0),故所求椭圆=1(ab0)的c=,又椭圆的离心率e=,则a=5,a2=25,b2=a2-c2=20,故椭圆的标准方程为=1.4.已知双曲线C:=1的焦距为10,点P(2,1)在双曲线C的渐近线上,则双曲线C的方程为()A.=1B.=1C.=1D.=1答案A解析根据双曲线标准方程中系数之间的关系求解.=1的焦距为10,c=5=.又双曲线渐近线方程为y=x,且P(2,1)在渐近线上,=1,即a=2b.由解得a=2,b=,故选A.

3、5.双曲线C:x2-=1的一条渐近线与抛物线M:y2=4x的一个交点为P(异于坐标原点O),抛物线M的焦点为F,则OFP的面积为()A.B.C.D.答案A解析双曲线C:x2-=1的一条渐近线方程为y=x,与抛物线M:y2=4x的一个交点为P,将y=x代入抛物线方程,可得3x2=4x,解得x=0(舍)或x=,所以P,又抛物线y2=4x的焦点F(1,0),则OFP的面积为S=1.故选A.6.已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.=1B.=1C.=1D.=1答案B解析抛物线y2=24x的准线方程为x=-6,故双曲线中c

4、=6.由双曲线=1的一条渐近线方程为y=x,知,且c2=a2+b2.由解得a2=9,b2=27.故双曲线的方程为=1,故选B.7.P是长轴在x轴上的椭圆=1上的点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|PF2|的最大值与最小值之差一定是()A.1B.a2C.b2D.c2答案D解析由椭圆的几何性质得|PF1|a-c,a+c,|PF1|+|PF2|=2a,所以|PF1|PF2|=a2,当且仅当|PF1|=|PF2|时取等号.|PF1|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2-c2+a2=b2,所以|PF1|PF2

5、|的最大值与最小值之差为a2-b2=c2.8.已知抛物线C:y2=8x的焦点为F,过点P(1,0)的直线l交抛物线C于A,B两点,交抛物线C的准线于点Q,若|QF|2=2|AF|BF|,则直线l斜率的绝对值为()A.2B.C.D.答案C解析由题意得F(2,0),直线l的斜率存在且不为0,设l的方程为y=k(x-1),代入抛物线方程得k2x2-(2k2+8)x+k2=0,设A(x1,y1),B(x2,y2),则x1x2=1,x1+x2=2+,由抛物线定义得|AF|BF|=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=9+,又因为Q(-2,-3k),所以|QF|2=42+(-3k)2=

6、16+9k2,由|QF|2=2|AF|BF|,得16+9k2=29+,解得|k|=,此时0,符合题意,所以|k|=.故选C.9.设双曲线=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.答案D解析双曲线=1的一条渐近线方程为y=x,由方程组消去y,得x2-x+1=0有唯一解,所以=-4=0,所以=2,所以e=,故选D.10.直线y=k(x-1)与椭圆C:=1交于不同的两点M,N,椭圆=1的一个顶点为A(2,0),当AMN的面积为时,则k的值为()A.B.C.1D.答案C解析直线y=k(x-1)与椭圆C联立消元可得(1+2k2)x2-4k2x+2k2-4

7、=0,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,|MN|=.A(2,0)到直线y=k(x-1)的距离为d=,AMN的面积S=|MN|d=.AMN的面积为,k=1,故选C.11.如图,南北方向的公路L,A地在公路正东2 km处,B地在A北偏东60方向2 km处,河流沿岸曲线PQ上任意一点到公路L和到A地距离相等.现要在曲线PQ上某处建一座码头,向A,B两地运货物,经测算,从M到A,B修建公路的费用都为a万元/km,那么,修建这两条公路的总费用最低是()A.(2+)a万元B.(2+1)a万元C.5a万元D.6a万元答案C解析本题主要考查抛物线的实际应用.依题意知曲线PQ是以

8、A为焦点、L为准线的抛物线,根据抛物线的定义知,欲求从M到A,B修建公路的费用最低,只需求出B到直线L的距离即可.B地在A地北偏东60方向2km处,B到点A的水平距离为3km,B到直线L的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a万元,故选C.12.设A,B是椭圆C:=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是()A.(0,19,+)B.(0,9,+)C.(0,14,+)D.(0,4,+)答案A解析由题意,可知当点M为短轴的端点时,AMB最大.当0m3时,椭圆C的焦点在x轴上,要使椭圆C上存在点M满足AMB=120,则tan60=,即,解得03时

9、,椭圆C的焦点在y轴上,要使椭圆C上存在点M满足AMB=120,则tan60=,即,解得m9,综上m的取值范围为(0,19,+),故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.若双曲线x2-=1的离心率为,则实数m=.答案2解析由题意知a=1,b=,m0,c=,则离心率e=,解得m=2.14.设椭圆=1(ab0)的左、右焦点分别是F1,F2,线段F1F2被点分成31的两段,则此椭圆的离心率为.答案解析由题意,得=3,即+c=3c-b,得b=c,因此e=.15.已知双曲线E:=1(a0,b0)与抛物线C:y2=2px(p0)有共同的一个焦点,过双曲线E的左焦点且与抛物线C相切的

10、直线恰与双曲线E的一条渐近线平行,则E的离心率为.答案解析因为抛物线与双曲线共焦点,所以c=,p=2c,抛物线方程为y2=4cx,设双曲线的左焦点为F1,F1(-c,0),过F1与一条渐近线y=x平行的直线方程为y=(x+c),由得by2-4acy+4bc2=0,所以=16a2c2-16b2c2=0,所以a=b,从而c=a,离心率为e=.16.以下四个关于圆锥曲线的命题:设A,B为两个定点,k为非零常数,|-|=k,则动点P的轨迹为双曲线;过定圆C上一定点A作圆的动弦AB,O为坐标原点,若),则动点P的轨迹为椭圆;方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;双曲线=1与椭圆+

11、y2=1有相同的焦点.其中正确命题的序号是.答案解析双曲线的定义是:平面上与两个定点A,B的距离的差的绝对值为常数2a,且02a0,b0),又双曲线过点(0,2),c=5,a=2,b2=c2-a2=25-4=21,双曲线的标准方程是=1,实轴长为4,焦距为10,离心率e=,渐近线方程是y=x.18.(本小题满分12分)若已知椭圆=1与双曲线x2-=1有相同的焦点,又椭圆与双曲线交于点P,求椭圆及双曲线的方程.解由椭圆与双曲线有相同的焦点,得10-m=1+b,即m=9-b,由点P在椭圆、双曲线上,得y2=m,y2=,解由组成的方程组得m=1,b=8,椭圆方程为+y2=1,双曲线方程为x2-=1.

12、19.(本小题满分12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1.因此点P的轨迹方程为x2+y2=2.(2)证明由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+t

13、n-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.20.(本小题满分12分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.(1)解设椭圆C的方程为=1(ab0).由题意得解得c=.所以b2=a2-c2=1.所以椭圆C的方程为+y2=1.(2)证明设M(m,n),则D(m,0),N(m,-n).由题设知

14、m2,且n0.直线AM的斜率kAM=,故直线DE的斜率kDE=-.所以直线DE的方程为y=-(x-m),直线BN的方程为y=(x-2).联立解得点E的纵坐标yE=-.由点M在椭圆C上,得4-m2=4n2.所以yE=-n.又SBDE=|BD|yE|=|BD|n|,SBDN=|BD|n|,所以BDE与BDN的面积之比为45.21.(本小题满分12分)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.解(1)由已知可设椭圆C2的方程为=1(a2),其离心率为,故,解得a=

15、4.故椭圆C2的方程为=1.(2)设A,B两点的坐标分别为(xA,yA),(xB,yB),由=2及(1)知,O,A,B三点共线且点A,B不在y轴上,因此可设直线AB的方程为y=kx.将y=kx代入+y2=1中,得(1+4k2)x2=4,所以.将y=kx代入=1中,得(4+k2)x2=16,所以.又由=2,得=4,即,解得k=1.故直线AB的方程为y=x或y=-x.22.(本小题满分12分)已知椭圆C:=1(ab0)的短轴长为2,离心率为,直线l:y=kx+m与椭圆C交于A,B两点,且线段AB的垂直平分线通过点.(1)求椭圆C的标准方程;(2)求AOB(O为坐标原点)面积的最大值.解(1)由已知

16、可得解得a2=2,b2=1,故椭圆C的标准方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程消去y得(1+2k2)x2+4kmx+2m2-2=0.当=8(2k2-m2+1)0,即2k2m2-1时,x1+x2=,x1x2=,所以.当k=0时,线段AB的垂直平分线显然过点,SAOB=|AB|m|=|m|2.因为m(-1,0)(0,1),所以m2(0,1).SAOB,当m2=时,取到等号.当k0时,因为线段AB的垂直平分线过点,所以=-,化简整理得2k2+1=2m.由得0m2.又原点O到直线AB的距离d=,|AB|=|x1-x2|=2,所以SAOB=|AB|d=,而2k2+1=2m且0m2,则SAOB=,0m2.所以当m=1,即k2=时,SAOB取得最大值.综上,SAOB最大值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3