ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:210.50KB ,
资源ID:134172      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-134172-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015秋人教版高中数学必修一教案 1.3.1(1)函数的单调性.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015秋人教版高中数学必修一教案 1.3.1(1)函数的单调性.DOC

1、1.3.1(1)函数的单调性(教学设计)教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1、理解增函数、减函数的概念及函数单调性的定义2、会根据函数的图像判断函数的单调性3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1、培养学生利用数学语言对概念进行概括的能力2、学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1、通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习

2、数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1、函数与映射的定义。2、函数的常用表示方法3、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:yx1-11-1yx1-11-1yx1-11-1随x的增大,y的值有什么变化?能否看出函数的最大(小)值?函数图象是否具有某种对称性?4、作出下列函数的图象:(1)y=x ; (2)y=x2 ;二、师生互动,新课讲解:观察函数y=x与y=x2的图象,当x逐渐增大时,y的变化情况如何?可观察到的图象特征:(1)函数的图象由左至右是上升的;(2)函数的图象在轴左侧是下降的,在轴右侧是上升的;也就是图象在区间

3、上,随着的增大,相应的随着减小,在区间上,随着的增大,相应的也随着增大归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同函数图象的这种变化规律就是函数性质的反映1如何用函数解析式描述“随着的增大,相应的随着减小”,“随着的增大,相应的也随着增大”?在区间上任取x1,x2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数,经过师生讨论得出:在区间上,任取两个,当时,有这时,我们就说函数在区间上是增函数课堂练习请你仿照刚才的描述,说明函数在区间上是减函数2增函数和减函数的定义设函数的定义域为:(1)如果对于

4、定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数(increasing function)区间D叫做函数的增区间。(2)请你仿照增函数的定义给出函数在区间上是减函数的定义如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数(decreasing function)区间D叫做函数的减区间。3对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间上的任意两个自变量都有”的含义例题选讲:例1:(课本P29例1)图2-10是定义在闭区间上的

5、函数y=f(x)的图象,根据图象说出x=f(x)的单调区间,以及在每一单调区间上,y=f(x)是增函数还是减函数解:函数y=f(x)的单调区间有,其中 y=f(x)在区间上是增函数变式训练1:如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32C),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?例2 证明函数f(x)=3x+2在R上是增函数证明:设x1,x2 是R上的任意两个实数,且x1x2,则f(x1)-f(x2)=(3x1+2)-(3x2+2)=3(x1-x2)由x

6、1x2,得x1-x20,于是 f(x1)-f(x2)0,即 f(x1)f(x2)所以,f(x)= 3x+ 2在R上是增函数想一想:函数f(x)=-3x+2在R上是增函数还是减函数?试画出f(x)的图象,判断你的结论是否正确归纳:利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)变式训练2:(1)证明函数y=在(0,+)上为减函数。(2)证明函数在(1,+)上为增函数课堂练习:(课本P32练习NO

7、:1;2;3;4)三、课堂小结,巩固反思:(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的(2)用定义证明函数的单调性:取 值 作 差 变 形 定 号 下结论(3)如果函数在区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间叫做的单调区间四、布置作业:A组:1、(课本P39习题1.3A组NO:1)2、(课本P39习题1.3A组NO:2)3、(课本P39习题1.3A组NO:3)4、证明函数在(0,1)上为减函数B组:1、作出函数y =x2 +2|x|+3的图象并指出它的的单调区间。(提示:可以看作y=f(|x|)的图象的作法)2、(tb0109105)已知函数f(x)是区间(0,+)上的减函数,那么(1)f(3)与f(2)的大小关系是_;(答:f(3)1的解集

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3