1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课堂10分钟达标1.若x2-2ax+20在R上恒成立,则实数a的取值范围是()A.(-,B.(-,)C.-,)D.-,【解析】选D.=(-2a)2-4120,所以-a.2.若产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0x0的解集是()A.(-3,2)B.(2,+)C.(-,-3)(2,+)D.(-,-2)(3,+)【解析】选C.原不等式等价于(x-2)(x+3)0,解不等式可得x2或x0恒成立时,k的取值范围为_.【解析】由题
2、意知0,即1-4k,即k.答案:5.已知不等式x2+px-60的解集为x|-3x2,则p=_.【解析】由题意可知一元二次方程x2+px-6=0的两根为-3,2,由根与系数的关系得-3+2=-p,解得p=1.答案:16.不等式mx2+2(m+1)x+9m+40的解集为R,求实数m的取值范围.【解析】mx2+2(m+1)x+9m+40恒成立.当m=0时,2x+40并不恒成立;当m0时,得所以m-.所以m的取值范围是m-.7.【能力挑战题】已知f(x)=-3x2+a(5-a)x+b,若对于任意的实数a,f(2)0恒成立,试确定b的取值范围.【解析】由f(2)0可得-12+2a(5-a)+b0,要使对于任意的实数a,2a2-10a+(12-b)0恒成立,则有0恒成立,解得b-,故实数b的取值范围为.关闭Word文档返回原板块