1、课后限时集训(六)遗传的分子基础(建议用时:25分钟)一、选择题1(2020名校联考)下图表示某生物细胞内遗传信息的复制和表达过程,下列说法正确的是()A图示过程主要发生在衣藻、蓝藻、细菌等单细胞生物体内B图中三个生理过程都有氢键的形成和断裂C图中遗传信息的传递方向是DNARNA,RNA蛋白质D图中的“核酸蛋白质”复合体有核糖体、染色体、DNA酶等B图中显示复制、转录、翻译三个生理过程同时进行,主要发生在原核生物,衣藻是真核生物,A错误;翻译过程有tRNA反密码子和mRNA密码子的配对碱基之间氢键的形成和断裂,B正确;图中遗传信息的传递方向是DNADNA,DNARNA,RNA蛋白质,C错误;图
2、中的“核酸蛋白质”复合体有核糖体、DNA酶等,无染色体,D错误。2(2020全国卷)细胞内有些tRNA分子的反密码子中含有稀有碱基次黄嘌呤(I)。含有I的反密码子在与mRNA中的密码子互补配对时,存在如图所示的配对方式(Gly表示甘氨酸)。下列说法错误的是()A一种反密码子可以识别不同的密码子B密码子与反密码子的碱基之间通过氢键结合CtRNA分子由两条链组成,mRNA分子由单链组成DmRNA中的碱基改变不一定造成所编码氨基酸的改变C根据图像可知,反密码子CCI可与mRNA中的GGU、GGC、GGA互补配对,说明一种反密码子可以识别不同的密码子,A项正确;密码子与反密码子的碱基互补配对,密码子与
3、反密码子的碱基之间通过氢键结合,B项正确;tRNA分子和mRNA分子都是单链结构,C项错误;由于某些氨基酸可对应多种密码子,故mRNA中的碱基改变不一定造成所编码氨基酸的改变,D项正确。3(2020广东六校联考)许多基因的启动子内富含CG重复序列,若其中的部分胞嘧啶(C)被甲基化成为5甲基胞嘧啶,就会抑制基因的转录。下列与之相关的叙述中,正确的是()A在一条单链上相邻的C和G之间通过氢键连接B胞嘧啶甲基化导致表达的蛋白质结构改变C基因的表达水平与基因的甲基化程度无关D胞嘧啶甲基化会阻碍RNA聚合酶与启动子结合D在DNA的一条单链上相邻的C和G之间通过脱氧核糖磷酸脱氧核糖连接,A项错误;因为许多
4、基因的启动子内富含CG重复序列,因此胞嘧啶甲基化导致基因的转录不能进行,不能合成蛋白质,B项错误;胞嘧啶甲基化影响基因的转录,阻碍RNA聚合酶与启动子结合,因此影响基因的表达,C项错误,D项正确。4(2020成都诊断检测)真核生物基因中编码蛋白质的序列(外显子)被一些不编码蛋白质的序列(内含子)隔开。基因的模板链在转录过程中会将外显子与内含子都转录在一条前体mRNA中,前体mRNA中由内含子转录的片段被剪切后,再重新将其余片段拼接起来成为成熟的mRNA。下列叙述错误的是()A前体mRNA的合成过程需要RNA聚合酶参与B基因的内含子中含有转录成终止密码子的片段C内含子发生碱基对的缺失可能不会导致
5、性状改变D将模板链与成熟mRNA结合可检测内含子的位置B前体mRNA通过转录过程合成,而转录需要RNA聚合酶的参与,A正确;前体mRNA中由内含子转录的片段会被剪切掉,因此基因的内含子中不含有转录成终止密码子的片段,B错误;前体mRNA中由内含子转录的片段会被剪切掉,因此内含子发生碱基对的缺失可能不会导致性状改变,C正确;前体mRNA中由内含子转录的片段会被剪切掉,因此将模板链与成熟mRNA结合可检测内含子的位置,D正确。二、非选择题5(2020衡中同卷)早期,科学家对DNA分子复制方式的预测如图甲所示,1958年,科学家以大肠杆菌为实验材料,设计了一个巧妙的实验,证实了DNA以半保留的方式复
6、制。试管是模拟实验中可能出现的结果(如图乙)。回答下列问题。甲乙培养过程:.在含15N的培养液中培养若干代,使DNA双链均被15N标记(试管).转至含14N的培养液中培养,每30 min复制一代。.取出每代DNA的样本离心,记录结果。(1)本实验运用的主要技术为_,步骤的目的是标记大肠杆菌中的_;至少需要_min才会出现试管的结果。(2)30 min后离心只有1条中等密度带(如试管所示),则可以排除DNA复制的方式是_; 为进一步确定DNA复制的方式,科学家对结果中的DNA分子用解旋酶处理后离心,若出现_,则DNA复制的方式为半保留复制。(3)若某次实验的结果中,中带比以往实验结果所呈现的略宽
7、,其原因可能是新合成的DNA单链中N元素仍有少部分为_。解析(1)本实验运用的主要技术为同位素示踪技术,步骤的目的是标记大肠杆菌中的DNA出现试管的结果至少需要DNA复制两次,每次复制的时间为30 min,因此至少需要60 min才会出现试管的结果。(2)复制一代后离心只有1条中等密度带,说明DNA复制方式不会为全保留复制。如果DNA的复制方式为分散复制,则每一条脱氧核苷酸链既保留母链部分又有子链部分,则可能出现不了清晰的条带,而半保留复制能出现清晰的重带和轻带两种条带。(3)若中带比以往实验结果所呈现的略宽,其原因可能是新合成的DNA单链中N元素仍有少部分为15N。因为转移培养时,可能带入了
8、少量的原来的培养基。答案(1)同位素示踪技术DNA60(2)全保留复制重带和轻带两种条带(3)15N6(2020山东等级考模拟)2019年诺贝尔生理学或医学奖授予在低氧感应方面做出贡献的科学家。研究发现,合成促红细胞生成素(EPO)的细胞持续表达低氧诱导因子(HIF1)。在氧气供应正常时,HIF1合成后很快被降解;在氧气供应不足时,HIF1不被降解,细胞内积累的HIF1可促进EPO的合成,使红细胞增多以适应低氧环境,相关机理如下图所示。此外,该研究可为癌症等诸多疾病的治疗提供新思路。(1)如果氧气供应不足,HIF1进入细胞核,与其他因子(ARNT)一起与EPO基因上游的调控序列结合,增强该基因
9、的_,使EPO合成和分泌增加。EPO刺激骨髓造血干细胞,使其_,生成大量红细胞,从而提高氧气的运输能力。(2)正常条件下,氧气通过_的方式进入细胞,细胞内的HIF1在脯氨酰羟化酶的作用下被羟基化,最终被降解。如果将细胞中的脯氨酰羟化酶基因敲除,EPO基因的表达水平会_(填“升高”或“降低”),其原因是_。(3)一些实体肿瘤(如肝癌)中的毛细血管生成滞后,限制了肿瘤的快速发展。研究发现,血管内皮生长因子能促进血管内皮细胞增殖和毛细血管的生成。假设血管内皮生长因子的合成与EPO合成的调节途径类似,且途径有两个:途径相当于图中HIF1的降解过程,途径相当于HIF1对EPO合成的调控过程。为了限制肿瘤
10、快速生长,可以通过调节途径和途径来实现,进行调节的思路是_。解析(1)若氧气供应不足,HIF1进入细胞核,与ARNT一起与EPO基因上游的调控序列结合,增强该基因的表达水平,使EPO合成和分泌增加。EPO(促红细胞生成素)可刺激骨髓造血干细胞增殖和分化,生成大量红细胞,从而提高氧气的运输能力。(2)氧气进入细胞的方式为自由扩散;若脯氨酰羟化酶基因被敲除,细胞中缺少脯氨酸酰羟化酶,则HIF1不能被降解,其积累后,可进入细胞核与ARNT一起增强EPO基因的表达。(3)由题意可知,毛细血管生成滞后可限制肿瘤的快速生长,而毛细血管生成受血管内皮生长因子的调控。结合图解可知,途径会降低细胞中血管内皮生长因子的含量,进而抑制毛细血管的生成,可限制肿瘤的快速生长,途径则会增加细胞中血管内皮生长因子的含量,因此为限制肿瘤快速生长,应促进途径、抑制途径。答案(1)表达水平(或转录)增殖和分化(2)自由扩散升高该基因被敲除后,缺少脯氨酸酰羟化酶,HIF1不能被降解,其进入细胞核与ARNT一起与EPO基因上游的调控序列结合,增强EPO基因的表达(3)促进途径,抑制途径