ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:168.50KB ,
资源ID:132494      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-132494-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015秋人教版高中数学必修一教案 1.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015秋人教版高中数学必修一教案 1.doc

1、1.1.2集合间的基本关系教学设计(师)一、教学目标1知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集.真子集的概念.(3)能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想(2)体会类比对发现新结论的作用.二、教学重点.难点 重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别三、学法 让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.四、教学过程:(一)复习回顾:(1)元素与集合

2、之间的关系(2)集合的三性:确定性,互异性,无序性(3)集合的常用表示方法:列举法,描述法(4)常见的数集表示(二)创设情景,新课引入:问题l:实数有相等.大小关系,如5=5,57,53等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1);(2)设A为我班第一组男生的全体组成的集合,B为我班班第一组的全体组成的集合;(3)设(4).组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得

3、出两个集合之间的关系:归纳:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作: 读作:A包含于B(或B包含A).如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。如图l和图2分别是表示问题2中实例1和实例3的Venn图.图1 图2问题2:与实数中的结论“若”相类比,在集合中,你能得出什么结论?教师引导

4、学生通过类比,思考得出结论: 若.问题3:已知集合:A=x|x=2m+1,mZ,B=x|x=2n-1,nZ,请问A与B相等吗?。问题4:请同学们举出几个具有包含关系.相等关系的集合实例,并用Venn图表示.学生主动发言,教师给予评价.问题5:阅读教材第6-7页中的相关内容,并思考回答下例问题:(1)集合A是集合B的真子集的含义是什么?什么叫空集?(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?(3)0,0与三者之间有什么关系?(4)包含关系与属于关系正义有什么区别?试结合实例作出解释.(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何一人集合是它本身的子

5、集,即?(7)对于集合A,B,C,D,如果AB,BC,那么集合A与C有什么关系?教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.总结归纳:(1)集合与集合之间的 “相等”关系;,则中的元素是一样的,因此即任何一个集合是它本身的子集。即:(2)真子集的概念若集合,存在元素,则称集合A是集合B的真子集(proper subset)。记作:A B(或B A)读作:A真包含于B(或B真包含A)(3)空集的概念不含有任何元素的集合称为空集(empty set),记作:规定:空集是任何集合的子集,是任何非空集合的真子集。(4)结论:由上述集合之间的基本关系,可以得到关于子集

6、的下述性质: (1) (类比)(2)若则(类比,则)(3)一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,特别地,空集的子集个数为1,真子集个数为0。例题选讲:例1某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合则下列包含关系哪些成立?试用Venn图表示这三个集合的关系。变式训练1:已知集合A=正方形,B=矩形,C=平行四边形,D=菱形,E=四边形,则它们之间有哪些包含关系?例2(课本P7例3)写出集合a,b的所有子集,并指出哪些是它的真子集? 变式训练2:(1) 分别写出集合,0,0,1

7、,0,1,2)的子集及其个数.(2)已知集合A2,3,7,且A中至多有一个奇数,则这样的集合A有(D)(A)3个 (B)4个 (C)5个 (D)6个课堂练习(课本P7练习NO:1,2,3)教师及时检查反馈。强调能确定是真子集关系的最好写真子集,而不写子集.例3:化简集合A=x|x-31,B=x|x5,并表示A、B的关系;强调:数轴在表示不等式集合的重要性变式训练3:化简集合A=x|x-32,B=x|x5,并表示A、B的关系;例4(tb0100901):用适当的符号表示下列各题元素与集合、集合与集合之间的关系。(1) 0与;(2)与0;(3)与;(4)1与(0,1)解:(1)是不含任何元素的集合

8、,所以0;(2)是任何非空集合的真子集,所以真包含于0;(3)是以为元素的单元集,所以又是任何非空集合的真子集,所以真包含于。(4)(0,1)是以数对(0,1)为元素的单元集,所以1(0,1)。例5:已知集合A=-1,3,2m-1,集合B=3,m2,若BA,则实数m=_(答:1)(四)课堂小结,总结反思: 1.请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又那些.2.在本节课的学习过程中,还有那些不太明白的地方,请向老师提出.(五)布置作业(备注:A与B组为必做题;C组为选做题)A组:1、(课本P11习题1.1A组NO:5)(做在课本上)2、(tb0300710)下面五个关

9、系式:(1)00;(2)00;(3)=0;(4) 0;(5) 0其中正确的是(D)。(A)(1)(3) (B)(1)(5) (C)(2)(4) (D)(2)(5)3、已知集合P=1,2,那么满足QP的集合Q的个数是(A)(A)4 (B)3 (C)2 (D)14、以下各组中两个对象是什么关系,用适当的符号表示出来0与0;0与;与0;0,1与(0,1);(b,a.)与(a.,b)B组:1、已知集合,且满足,求实数的取值范围。2已知集合若 求的值3有三个元素的集合A,B,已知A=2,x,y,B=2x,2,2y,且A=B,求x,y的值。4、(tb0300712)已知集合A=x|x2,B=x|4x+m0,若BA,则m的取值范围是_。(答:m4)C组:1、(tb0401003)已知B=3,x2+ax+a,C=x2+(a+1)x-3,1,使B=C,求a,x的值。(答:a=-2且x=3或a= -6且x= -1)2、已知集合A,B,则A_B.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3