ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:180KB ,
资源ID:1321627      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1321627-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新高三必备:巧解外接球问题论文.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新高三必备:巧解外接球问题论文.doc

1、巧解外接球问题 摘要:外接球有关计算问题在近年高考试题中屡见不鲜,本文就长方体、正方体及棱锥的外接球有关问题,给出了特殊解法。关键词:巧解 外接球 问题普通高中数学课程标准中对立体几何初步的学习提出了基本要求:“在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;。”由此可见,长方体模型是学习立体几何的基础,掌握长方体模型,对于学生理解立体几何的有关问题起着非常重要的作用。有关外接球的立体几何问题是近年各省高考试题的难点之一,这与学生的空间想象能力以及化归能力有关,本文通过近年来部分高考试题中外接球的问题谈几种解法。

2、一、直接法1、求正方体的外接球的有关问题例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为 .解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是所以球的半径为.故该球的体积为.2、求长方体的外接球的有关问题例3 (2007年天津

3、高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为,则此球的表面积为 .解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为,故球的表面积为.例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. B. C. D. 解析:正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C.二、构造法1、构造正方体例5 (2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是

4、 .解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则,那么三棱锥的外接球的直径即为正方体的体对角线,故所求表面积是.(如图1)图2图1例 6 (2003年全国卷)一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( )A. B. C. D. 解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个

5、正方体,再寻找棱长相等的四面体,如图2,四面体满足条件,即,由此可求得正方体的棱长为1,体对角线为,从而外接球的直径也为,所以此球的表面积便可求得,故选A. (如图2)例7(2006年山东高考题)在等腰梯形中,为的中点,将与分布沿、向上折起,使重合于点,则三棱锥的外接球的体积为( ).A. B. C. D. 解图3析:(如图3) 因为,所以,即三棱锥为正四面体,至此,这与例6就完全相同了,故选C. 例8 (2008年浙江高考题)已知球的面上四点A、B、C、D,则球的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于,联想长方体中的相应

6、线段关系,构造如图4所示的长方体,又因为,则此长方体为正方体,所以长即为外接球的直径,利用直角三角形解出.故球的体积等于.(如图4)图42、构造长方体例9(2008年安徽高考题)已知点A、B、C、D在同一个球面上,若,则B、C两点间的球面距离是 .图5解析:首先可联想到例8,构造下面的长方体,于是为球的直径,O为球心,为半径,要求B、C两点间的球面距离,只要求出即可,在中,求出,所以,故B、C两点间的球面距离是.(如图5)参考文献:1 叶尧城.高中数学课程标准教师读本M.武汉:华中师范大学出版社,20032 严士健 王尚志.普通高中课程标准实验教科书数学2(必修)M.北京:北京师范大学出版社,2009

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3