收藏 分享(赏)

安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc

上传人:高**** 文档编号:1319272 上传时间:2024-06-06 格式:DOC 页数:18 大小:866KB
下载 相关 举报
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第1页
第1页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第2页
第2页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第3页
第3页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第4页
第4页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第5页
第5页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第6页
第6页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第7页
第7页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第8页
第8页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第9页
第9页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第10页
第10页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第11页
第11页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第12页
第12页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第13页
第13页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第14页
第14页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第15页
第15页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第16页
第16页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第17页
第17页 / 共18页
安徽省宿州市教研室2014届高三物理总复习特色原创专题 复合场 WORD版含答案.doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

1、复合场1.如图所示,空间存在着由匀强磁场B和匀强电场E组成的正交电磁场,电场方向水平向左,磁场方向垂直纸面向里.有一带负电荷的小球P,从正交电磁场上方的某处自由落下,那么带电小球在通过正交电磁场时().(A)一定作曲线运动(B)不可能作曲线运动(C)可能作匀速直线运动(D)可能作匀加速直线运动cBE2.如图所示,在某空间同时存在着相互正交的匀强电场E和匀强磁场B,电场方向竖直向下,有质量分别为m1、m2的a、b两带负电的微粒,a的电量为q1,恰能静止于场中空间的c点,b的电量为q2,在过c点的竖直平面内做半径为r的匀速圆周运动,在c点a、b相碰并粘在一起后做匀速圆周运动,则( )Aa、b粘在一

2、起后在竖直平面内以速率做匀速圆周运动Ba、b粘在一起后仍在竖直平面内做半径为r的匀速圆周运动Ca、b粘在一起后在竖直平面内做半径大于r的匀速圆周运动Da、b粘在一起后在竖直平面内做半径为的匀速圆周3.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图10-12所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是()A这离子必带正电荷 BA点和B点位于同一高度C离子在C点时速度最大 D离子到达B点时,将沿原曲线返回A点4.如果用同一回旋加速器分别加速氚核()和粒子()比较它们所加的高频交流电源的周

3、期和获得的最大动能的大小,有(B)A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大5如题5图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷。导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B。当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低。由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为A

4、,负 B,正 C,负 D,正Ox y z6.在同时存在匀强电场合匀强磁场的空间中取正交坐标系Oxyz(z轴正方向竖直向上),如图所示。已知电场方向沿z轴正方向,场强大小为E;磁场方向沿y轴正方向,磁感应强度的大小为B;重力加速度为g.问:一质量为m、带电量为+q的从原点出发的质点能否在坐标轴(x、y、z)上以速度v做匀速运动?若能,m、q、E、B、v及g应满足怎样的关系?若不能,说明理由.答:能沿x周轴正向:Eq+Bqv=mg;能沿x周轴负向:Eq=mg+Bqv;能沿y轴正向或负向:Eq=mg;不能沿z轴,因为电场力和重力的合力沿z轴方向,洛伦兹力力不可能为零.7.如左图所示为电视机中显象管的

5、原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象.不计逸出电子的初速度和重力。已知电子的质量为m、电荷量为e,加速电场的电压为U.偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如右图所示。在每个周期内磁感应强度都是从-B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO/平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变

6、,即为匀强磁场,不计电子之间的相互作用.求电子射出电场时的速度大小.为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值.荧光屏上亮线的最大长度是多少?电子枪OU+-abcdsMNO/BtOB0-B0答案: 8.如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场。已知HOd,HS2d,90。(忽略离子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角;E0=U0/d =45(2)求质量

7、为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处。求S1和S2之间的距离以及能打在NQ上的正离子的质量范围。 mmx25mabEB9.如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为L的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上.将一套在杆上的带正电的小球从a端由静止释放后,小球先做加速运动,后做匀速运动到达b端.已知小球与绝缘杆间的动摩擦因数=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L/3,求带电小球从a

8、到b运动过程中克服摩擦力所做的功与电场力所做功的比值.(4/9)abcdSo10. 如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为、带电量为q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)答案11. 汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示。真空

9、管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行金属极板P和间的区域。当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到点,与O点的竖直间距为d,水平间距可以忽略不计。此时,在P点和间的区域,再加上一个方向垂直于纸面向里的匀强磁场。调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点。已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示)。(1)求打在荧光屏O点的电子速度的大小。(2)推导出电子比荷的表达式。+_L1L2d

10、OO+_O1KAAbPP12.图示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴。板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略。求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系。(1)v0= (2)

11、U. (3)x=()(U).13. 如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,电场沿水平方向,一个质量为m、带电量为-q的带电微粒在此区域沿与水平方向成450斜向上做匀速直线运动,如图所示(重力加速度为g)。求:(1)电场强度的大小和方向及带电微粒的速度大小(2) 若某时刻微粒运动到场中距地面高度为H的P点时,将电场方向改成竖直向下,微粒至少须经多长时间运动到距地面最高点? (3) 微粒运动P点时,突然撤去磁场,电场强度不变,则该微粒运动中距地面的最大高度是多少?()13.图为可测定比荷的某装置的简化示意图,在第一象限区域

12、内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.010-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场; (3)为了在M处观测到按题设条件运动的上述粒子,在第

13、一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。(1)=4.9C/kg(或5.0C/kg);(2);(3)14.如图 所示,在x轴上方有垂 直于xy平面向里的匀 强磁场,磁感应强度 为B;在x轴下方有沿y 轴负方向的匀强电 场,场强为E。一质量 为m,电量为-q的粒子 从坐标原点O沿着y轴 正方向射出。射出之后,第三次到达x轴时,它与点O的距离为L。求此粒子射出时 的速度v和运动的总路程s(重力不计)。13.(12分)如图16a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以v0=l.5

14、104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图6所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)求: (1)匀强电场的电场强度E;3N/C (2)图6中时刻电荷与O点的水平距离;4cm (3)如果在O点右方d=68cm处有一垂直于MN的足够大的挡板,求电荷从0点出发运动到挡板所需的时间(取3.14,计算结果保留三位有效数字)3.8610-4s第17题16如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里。一个质量为m=1g、带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速度

15、下滑,当它滑行0.8m到N点时就离开壁做曲线运动。当A运动到P点时,恰好处于平衡状态,此时速度方向与水平成45角,设P与M的高度差H为1.6m。求:(1)A沿壁下滑时摩擦力做的功。(2)P与M的水平距离s是多少?答案 6103J ; 0.6m 第18题17如图所示,坐标系xOy所在的竖直面内,有垂直平面向里的匀强磁场,磁感应强度大小为B,在x0的空间内,还有沿x轴负方向的匀强电场,场强为E。一个带正电的油滴经图中x轴上的M点沿着与水平方向成=30的方向斜向下做直线运动,直到进入x0的区域,要使油滴在x0的区域在竖直面内做匀速圆周运动,并通过x轴上的N点,且,则(1)带电粒子运动的速率为多少?

16、(2)在x0的区域需加何种电场?(3)粒子从M点到N点所用的时间为多少? v= E1=Ecot=E 竖直向上 t=。 18(16分)如图所示,在以坐标原点O为圆心,半径为R的半圆行区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射人,带电粒子恰好做匀速直线运动,经t0时间从P点射出。(1)电场强度的大小和方向。(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射人,经时间恰从半圆形区域的边界射出,求粒子运动加速大小(3)若仅撤去电场,带电粒子仍从O点射入但速度为原来的4倍,求粒子在磁场中运动的时间。(1)

17、 (2) (3) 19.(18分)一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M、N间电场强度E的大小;(2)圆筒的半径R:(3)保持M、N间电场强度E不变,仅将M板向上平移2/3d,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞

18、次数n。320.如图所示,在坐标系xOy中,过原点的直线OC与x轴正向的夹角=120,在OC右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y轴、左边界为图中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。一带正电荷q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角30,大小为v。粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于

19、粒子在磁场中做圆周运动的周期。忽略重力的影响。求(1)粒子经过A点时速度的方向和A点到x轴的距离;(2)匀强电场的大小和方向;(3)粒子从第二次离开磁场到再次进入电场时所用的时间。 1)设磁场左边界与x轴相交于D点,与CO相交于O点,由几何关系可知,直线OO与粒子过O点的速度v垂直。在直角三角形OOD中OOD=30。设磁场左右边界间距为d,则OO=2d。依题意可知,粒子第一次进入磁场的运动轨迹的圆心即为O点,圆弧轨迹所对的圆心角为30,且OA为圆弧的半径R。由此可知,粒子自A点射入磁场的速度与左边界垂直。A点到x轴的距离 由洛仑兹力公式、牛顿第二定律及圆周运动的规律,得qvB= 联立式得 (2

20、)设粒子在磁场中做圆周运动的周期为T,第一次在磁场中飞行的时间为t1,有 依题意,匀强电场的方向与x轴正向夹角应为150。由几何关系可知,粒子再次从O点进入磁场的速度方向与磁场右边界夹角为60。设粒子第二次在磁场中飞行的圆弧的圆心为O,O必定在直线OC上。设粒子射出磁场时与磁场右边界交于P点,则OOP=120。设粒子第二次进入磁场在磁场中运动的时间为t2,有 设带电粒子在电场中运动的时间为t3,依题意得 由匀变速运动的规律和牛顿定律可知,-v=v-at3 联立可得 (3)粒子自P点射出后将沿直线运动。设其由P点再次进入电场,由几何关系知OPP=30 三角形OPP为等腰三角形。设粒子在P、P两点

21、间运动的时间为t4,有 又由几何关系知 联立式得 21.如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B。在t=0 时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向夹角分布在0180范围内。已知沿y轴正方向发射的粒子在t=时刻刚好从磁场边界上P(,a)点离开磁场。求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q;()此时刻仍在磁场中的粒子的初速度方向与轴正方向夹角的取值范围;()从粒子发射到全部粒子离开磁场所用的时间 速度与y轴的正方向的夹角范围是60到120从粒子发射到全部离开所用 时间 为22. 串列加速器是

22、用来产生高能离子的装置,图中虚线框内为其主体的原理示意图,其中加速管的中部b处有很高的正电势U,a、c两端均有电极接地(电势为零)。现将速度很低的负一价碳离子从a端输入,当离子到达b处时,可被设在b处的特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小。这些正n价碳离子从c端飞出后进入一与其速度方向垂直的、磁感应强度为B的匀强磁场中,在磁场中做半径为R的圆周运动。已知碳离子的质量m=2.010-26kg,U=7.5105V,B=0.5T,n=2,基元电荷e=1.610-19C,求R。0.75m23(20分)如图为回旋加速器示意图,其中置于高真空中的金属D形盒的半径为R,两盒间距为d,在左

23、侧D形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,方向如图所示。质子质量为m,电荷量为q。设质子从粒子源S进入加速电场时的初速度不计,加速质子时的电压恒为U,质子在电场中运动时,不考虑磁场的影响。求:(1)质子能达到的最大速度;(2)通过计算说明当Rd时,质子在电场中加速的总时间相对于在D形盒中回旋的总时间可忽略不计;(3)若D形盒内存在的磁场磁感应强度周期递增,质子便可在电场中加速,而绕行半径不变。为使质子绕行半径恒为R0,求:质子第i次进入磁场时磁感应强度Bi及质子从开始运动到第i次进入磁场时所用的总时间t0(i1,不计质子在电场中加速的时间)。解:(1)质子在磁场中作圆周运动,由半径

24、,(2分)当rR时有最大速度(2分)(2)设质子在电场中经n次加速后,速度达到vm,加速的时间为t1,从电场对质子速率改变的角度可将质子在电场中的运动等效为匀加速直线运动,有:质子在电场中的平均速度为,(2分) 可得:(2分)设质子在磁场中作圆周运动的周期为T,运动时间为t2 ,有: (2分) (2分)由可得: (2分)即当Rd时,t11) (2分)24.如图甲,在x0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为q(q0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射人,粒子的运动轨迹见图甲,不计粒子的质量。(1) 求该粒

25、子运动到y=h时的速度大小v;(2) 现只改变人射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y-x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y-t关系)是简谐运动,且都有相同的周期。(3) 。求粒子在一个周期内,沿轴方向前进的距离;当入射粒子的初速度大小为v0时,其y-t图像如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y-t的函数表达式。解:(1)动能定理解得(2)粒子的两个分运动:水平方向匀速直线运动竖直方向匀速圆周运动则 解得则y方向上最大位移(3)由图 解得25.某种加速器的理想模型如题15-1图所示:两块相距很近的平行

26、小极板中间各开有一小孔a、b,两极板间电压uab的变化图象如图15-2图所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场。若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从a 孔进入电场加速。现该粒子的质量增加了。(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使题15-1图中实线轨迹(圆心为O)上运动的

27、粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压uab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?(1)0(2)略(3) 25 26.如图甲所示,x轴正方向水平向右,y轴正方向竖直向上。在xoy平面内有与y轴平行的匀强电场,在半径为R的圆形区域内加有与xoy平面垂直的匀强磁场。在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q()和初速为的带电粒子。已知重力加速度大小为g。 (1)当带电微粒发射装置连续不断地沿y轴正方向发射这种带电微粒时,这些带电微粒将

28、沿圆形磁场区域的水平直径方向离开磁场,并继续沿x轴正方向运动。求电场强度和磁感应强度的大小和方向。 (2)调节坐标原点。处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入第1象限,如图乙所示。现要求这些带电微粒最终都能平行于x轴正方向运动,则在保证匀强电场、匀强磁场的强度及方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积。解:(1)1分 (2)设由带电微粒发射装置射入第象限的带电微粒的初速度方向与轴承夹角,则满足0,由于带电微粒最终将沿轴正方向运动,故B应垂直于平面向外,带电微粒在磁场内做半径为匀速圆周运动。由于带电微粒的

29、入射方向不同,若磁场充满纸面,它们所对应的运动的轨迹如图所示。2分为使这些带电微粒经磁场偏转后沿轴正方向运动。由图可知,它们必须从经O点作圆运动的各圆的最高点飞离磁场。这样磁场边界上P点的坐标P(x,y)应满足方程:,所以磁场边界的方程为:2分由题中0的条件可知,以的角度射入磁场区域的微粒的运动轨迹即为所求磁场的另一侧的边界。2分因此,符合题目要求的最小磁场的范围应是圆与圆的交集部分(图中阴影部分)。1分由几何关系,可以求得符合条件的磁场的最小面积为:25(18分)两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直

30、纸面向里为磁感应强度的正方向)。在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E0、磁感应强度B0、粒子的比荷均已知,且t0=,两板间距h=(l)求位子在0t0时间内的位移大小与极板间距h的比值。(2)求粒子在极板间做圆周运动的最大半径(用h表示)。(3)若板间电场强度E随时间的变化仍如图l所示,磁场的变化改为如图3所示试画出粒子在板间运动的轨迹图(不必写计算过程)。解法一:( l )设粒子在0t0时间内运动的位移大小为s1s1=at02 a= 又已知 t0=,h=联立 式解得 = ( 2 )粒子在t02t0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做

31、匀速圆周运动。设运动速度大小为v1,轨道半径为R1,周期为T ,则v1=at0 qv1B0 = 联立式得 R1= 又 T = 即粒子在t02t0时间内恰好完成一个周期的圆周运动。在2t03t0时间内,粒子做初速度为v1,的匀加速直线运动设位移大小为s2s2 = v1t0+at02 解得 s2 = h 由于S1S2 h ,所以粒子在3t04t0时间内继续做匀速圆周运动,设速度大小为v2,半径为R2v2=v1+at0 qv2B0 = (11)解得R2 = (12)由于s1+s2+R2 h ,粒子恰好又完成一个周期的圆周运动。在4t05t0时间内,粒子运动到正极板(如图1所示)。因此。、动的最大半径

32、R2=。( 3 )粒子在板间运动的轨迹如图2 所示。解法二:由题意可知,电磁场的周期为2t0 ,前半周期粒子受电场作用做匀加速直线运动,加速度大小为a=。方向向上后半周期位子受磁场作用做匀速圆周运动,周期为T T= =t0粒子恰好完成一次匀速圆周运动。至第n 个周期末,粒子位移大小为snSn=a(nt0)2 又已知 h = 由以上各式得Sn = h粒子速度大小为vn=ant0粒子做圆周运动的半径为Rn =解得 Rn =h显然 s2+R2hs3(1)粒子在0t0时间内的位移大小与极板间距h 的比值=(2)粒子在极板间做圆周运动的最大半径凡R2=h。( 3 )粒子在板间运动的轨迹图见解法一中的图2 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3