1、第4讲 离散型随机变量及其分布列最新考纲1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.知 识 梳 理1离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个随机变量(2)离散型随机变量:随机变量的取值能够_,这样的随机变量称为离散型随机变量(3)设离散型随机变量X取值为a1,a2,x取ai的概率为pi(i1,2,),记作P(Xai)pi(i1,2,)或列表:一一列举出来Xaia1a2P(Xa1)p1p2称为离散型随机变量X的分布列(4)性质:pi_0,i
2、1,2,;p1p2pipn_.1诊 断 自 测1.判断正误(在括号内打“”或“”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.()(3)如果随机变量X的分布列由下表给出,则它服从两点分布.()(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.()X25P0.30.72.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是()A.至少取到1个白球B.至多取到1个白球C.取到白球的个数D.取到的球的个数解析选项A,B表述的都是随机事件,选项D是确定的值2,并不随机;选项C是随机变量,可能取
3、值为0,1,2.答案C3.设随机变量X的分布列如下:C答案 C5.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布为_.X012P0.10.60.3答案X012P0.10.60.3考点一 离散型随机变量分布列的性质【例1】设离散型随机变量X的分布列为X01234P0.20.10.10.3m求:(1)2X1的分布列;(2)|X1|的分布列.解 由分布列的性质知:0.20.10.10.3m1,m0.3.首先列表为X012342X113579|X1|10123从而由上表得两个分布列为(1)2X1的分布列2X113579P0.20.10.10.30.3(2)|X1
4、|的分布列为|X1|0123P0.10.30.30.3规律方法(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证两个概率值均为非负数.(2)若X是随机变量,则|X1|等仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出分布列.【训练1】随机变量X的分布列如下:X101Pabc其中a,b,c成等差数列,则P(|X|1)_.考点二 离散型随机变量的分布列【例2】(2015山东卷节选)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,
5、每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列.规律方法求离散型随机变量X的分布列的步骤:(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.【训练2】某商店试销某种商品20天,获得如下数据:日销售量(件)01
6、23频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.所以X的分布列为考点三 超几何分布【例3】(2015天津卷节选)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同
7、一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列.所以随机变量X的分布列为规律方法超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.【训练3】(2016济南调研)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB30952012,PM2.5日均值在35微克/立方米以下空气质量为
8、一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米)25,35(35,45(45,55(55,65(65,75(75,85频数311113思想方法1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.易错防范掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.