1、51数列的概念与简单表示一、选择题1已知数列an的通项an(a,b,c都是正实数),则an与an1的大小关系是()Aanan1Banan1Canan1 D不能确定解析:an,y是减函数,y是增函数,anan1.答案:B2已知数列an中,a1,an11,则a16()A2 B3C1 D.解析:由题可知a211,a312,a41,a511,则此数列为周期数列,周期为3,故a16a1.答案:D3数列2n229n3中最大项是()A107 B108C108 D109解析:an2n229n32(n)2108,7,且nN*,当n7时,an最大,最大值为a7108.答案:B4已知数列an的前n项和Sn满足:Sn
2、SmSnm,且a11.那么a10()A1 B9C10 D55解析:由SnSmSnm,得S1S9S10a10S10S9S1a11.答案:A5一函数yf(x)的图象在给定的下列图象中,并且对任意an(0,1),由关系式an1f(an)得到的数列an满足an1an(nN*),则该函数的图象是()解析:由an1an可知数列an为递增数列,又由an1f(an)an可知,当x(0,1)时,yf(x)的图象在直线yx的上方,故选A.答案:A6数列an的前n项和为Sn,若a11,an13Sn(n1),则a6()A344 B3441C43 D431解析:由an13SnSn1Sn3Sn,即Sn14Sn,又S1a1
3、1,可知Sn4n1.于是a6S6S54544344.答案:A二、填空题7设数列an中,a12,an1ann1,则其通项公式an_.解析:由an1ann1,可得当n2时,a2a12,a3a23,anan1n.以上n1个式子左右两边分别相加,得ana123n,an1.又n1时,a12适合上式,an1.答案:18设数列an的前n项和为Sn,Sn(对于所有n1),且a454,则a1的值是_解析:Sn,anSnSn1(3n3n)a13na13n1(n2)a454,54a133.a12.答案:29数列an中,a11,a25,an2an1an(nN*),则a2011_.解析:a3a2a14,a4a3a245
4、1,a5a4a3145,a6a5a45(1)4,a7a6a54(5)1,a8a7a61(4)5.数列an为周期数列,6为其一个周期a2011a11.答案:1三、解答题10已知数列an中,a12,an1anln,求an.解析:由已知,an1anln,a12,anan1ln,an1an2ln,a2a1ln.将以上n1个式子累加,得ana1lnlnlnlnlnnan2lnn.11数列an的前n项和为Sn,且a11,an1Sn,n1,2,3,.求:(1)a2,a3,a4的值;(2)数列an的通项公式解析:(1)由a11,an1Sn,n1, 2,3,得a2S1a1,a3S2(a1a2),a4S3(a1a2a3).(2)当n2时,an1an(SnSn1)an,an1an(n2)又a2,an()n2(n2)数列an的通项公式为an12已知函数f(x)2x2x,数列an满足f(log2an)2n.(1)求数列an的通项公式;(2)求证:数列an是递减数列解析:(1)f(x)2x2x,f(log2an)2log2an2log2an2n,即an2n.a2nan10.an,又an0,ann.(2)证明:an0,且ann,1.an1an.即an为递减数列.