ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:761.61KB ,
资源ID:1314952      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1314952-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学专题复习 专题45 空间几何体的折叠问题(教师版).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学专题复习 专题45 空间几何体的折叠问题(教师版).docx

1、专题45 空间几何体的折叠问题一、题型选讲题型一 、展开问题例1、【2020年高考全国卷理数】如图,在三棱锥PABC的平面展开图中,AC=1,ABAC,ABAD,CAE=30,则cosFCB=_.【答案】【解析】,由勾股定理得,同理得,在中,由余弦定理得,在中,由余弦定理得.故答案为:.例2、(2017南京三模)如图,在直三棱柱ABCA1B1C1中,AB1,BC2,BB13,ABC90,点D为侧棱BB1上的动点当ADDC1最小时,三棱锥DABC1的体积为【答案】【解析】: 将侧面展开如下图,所以由平面几何性质可得:,当且仅当三点共线取到.此时,所以.在直三棱柱ABCA1B1C1中有,又,易得平

2、面,所以平面,即是三棱锥的高,所以题型二、折叠问题例3、【2019年高考全国卷理数】图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小.【答案】(1)见解析;(2).【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面由已知得ABBE,ABBC,故AB平面BCGE又因为AB平面ABC,所以平面ABC平面BCGE(2)作

3、EHBC,垂足为H因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC由已知,菱形BCGE的边长为2,EBC=60,可求得BH=1,EH=以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系Hxyz,则A(1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,1,0)设平面ACGD的法向量为n=(x,y,z),则即所以可取n=(3,6,)又平面BCGE的法向量可取为m=(0,1,0),所以因此二面角BCGA的大小为30例4、【2018年高考全国卷理数】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2

4、)求与平面所成角的正弦值.【答案】(1)见解析;(2).【解析】方法一:(1)由已知可得,BFPF,BFEF,所以BF平面PEF.又平面ABFD,所以平面PEF平面ABFD.(2)在平面DEF中,过P作PHEF于点H,连接DH,如图,由于EF为平面ABCD和平面PEF的交线,PHEF,则PH平面ABFD,故PHDH.则与平面所成的角为.在三棱锥P-DEF中,可以利用等体积法求PH.因为DEBF且PFBF,所以PFDE,又PDFCDF,所以FPD=FCD=90,所以PFPD,由于DEPD=D,则PF平面PDE,故,因为BFDA且BF平面PEF,所以DA平面PEF,所以DEEP.设正方形的边长为2

5、a,则PD=2a,DE=a,在PDE中,所以,故,又,所以,所以在PHD中,故与平面所成角的正弦值为.方法二:(1)由已知可得,BFPF,BFEF,所以BF平面PEF.又平面ABFD,所以平面PEF平面ABFD.(2)作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系Hxyz.由(1)可得,DEPE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PEPF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.例5、(2020届山东省德州市高三上期末)如图(

6、1),边长为的正方形中,分别为、上的点,且,现沿把剪切、拼接成如图(2)的图形,再将,沿,折起,使、三点重合于点,如图(3).(1)求证:;(2)求二面角最小时的余弦值.【答案】(1)证明见解析;(2).【解析】(1)折叠前,折叠后,又,所以平面,因此;(2)由(1)及题意知,因此以为原点,、分别为、轴建立空间直角坐标系如图:令,所以,设平面法向量为则所以,令,则又平面法向量为,设二面角的大小为,所以,又,当且仅当取等号,所以.所以二面角最小时的余弦值为.例6、(2020届浙江省宁波市余姚中学高考模拟)如图,为正三角形,且,将沿翻折.(1)若点的射影在上,求的长;(2)若点的射影在中,且直线与

7、平面所成角的正弦值为,求的长.【答案】(1)2 (2).【解析】(1)过A作交于E,则平面.取中点O,连接,平面,平面,又是正三角形,又,AE,平面,平面,.又,O为的中点,为的中点.,.;(2)取中点为过点作平面的垂线,垂足为,连接,因为.以O为原点,以为x轴,以为y轴,以平面的过O的垂线为z轴建立空间直角坐标系,如图所示:设二面角为,因为平面,与(1)同理可证平面,则,.,设平面的法向量为,则,令,得.,解得.,又,.题型三、折叠的综合性问题例7、(2020届山东省滨州市高三上期末)已知菱形中,与相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )AB存在一个位置,使为等

8、边三角形C与不可能垂直D直线与平面所成的角的最大值为【答案】ABD【解析】A选项,因为菱形中,与相交于点,所以,;将沿折起,使顶点至点,折起过程中,始终与垂直,因此,又,由线面垂直的判定定理,可得:平面,因此,故A正确;B选项,因为折起的过程中,边长度不变,因此;若为等边三角形,则;设菱形的边长为,因为,则,即,又,所以,即二面角的余弦值为时,为等边三角形;故B正确; C选项,由A选项知,所以,因此,同B选项,设菱形的边长为,易得,所以,显然当时,即;故C错误;D选项,同BC选项,设菱形的边长为,则,由几何体直观图可知,当平面,直线与平面所成的角最大,为,易知.故选:ABD.例8、(2020届

9、浙江省台州市温岭中学3月模拟)如图,在直角梯形中,为中点,分别为,的中点,将沿折起,使点到,到,在翻折过程中,有下列命题:的最小值为;平面;存在某个位置,使;无论位于何位置,均有.其中正确命题的个数为( )ABCD【答案】D【解析】在直角梯形中, ,为中点,分别为,的中点,将沿折起,使点到,到,在翻折过程中,当与重合时,的最小值为;所以正确;连接交于连接,可以证明平面平面,所以平面,所以正确;当平面时,可得平面,所以,所以正确;因为,所以直线平面,所以无论位于何位置,均有.所以正确;故选:D.二、达标训练1、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形,为的中点,以为折痕进

10、行折叠,使折后的,则过,四点的球的表面积为( )ABCD【答案】C【解析】边长为2的等边三角形,为的中点,以为折痕进行折叠,使折后的,构成以D为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,1,所以,球面积,故选C.2、(2020届浙江省杭州市建人高复高三4月模拟)如图,点在正方体的表面上运动,且到直线与直线 的距离相等,如果将正方体在平面内展开,那么动点的轨迹在展开图中的形状是( )ABCD【答案】B【解析】在平面BCC1B1上,P到直线C1D1的距离为|PC1|,P到直线BC与直线C1D1的距离相等,点P到点C1的距离与到直线BC的距

11、离相等,轨迹为抛物线,且点C1为焦点,BC为准线;故排除C,D,同理可得,在平面ABB1A1上,点P到点B的距离与到直线C1D1的距离相等,从而排除A,本题选择B选项.3、如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF将这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,则在这个空间图形中必有()A. AG平面EFH B. AH平面EFHC. HF平面AEF D. HG平面AEF【答案】 B【解析】 根据折叠,AHHE,AHHF不变,得AH平面EFH,故B正确;因为过点A只有一条直线与平面EFH垂直,所以A不正确;因为AGEF,E

12、FGH,AGGHG,所以EF平面HAG,又EF平面AEF,所以平面HAGAEF,过点H作直线垂直于平面AEF,该直线一定在平面HAG内,所以C不正确;由条件证不出HG平面AEF,所以D不正确故选B.4、【2020年高考浙江】已知圆锥的侧面积(单位:cm2)为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是_【答案】【解析】设圆锥底面半径为,母线长为,则,解得.故答案为:5、(2020届山东省济宁市高三上期末)下图是两个腰长均为的等腰直角三角形拼成的一个四边形,现将四边形沿折成直二面角,则三棱锥的外接球的体积为_【答案】【解析】由题设可将该三棱锥拓展成如图所示的正方体,则该正方

13、体的外接球就是三棱锥的外接球,由于正方体的对角线长为,即球的半径,该球的体积,应填答案6、(2018南京、盐城、连云港二模)在边长为4的正方形ABCD内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为的正四棱锥SEFGH(如图2),则正四棱锥SEFGH的体积为_(图1)(图2)【答案】.【解析】:连结EG,HF,交点为O,正方形EFGH的对角线EG2,EO1,则点E到线段AB的距离为1,EB.SO2,故正四棱锥SEFGH的体积为()22.7、【天津市和平区2020届高考三模】如图甲所示的平面五边形PABCD中,PD=PA,AC=CD=BD=5,AB=1,AD=2,PDPA,现将图

14、甲所示中的PAD沿AD边折起,使平面PAD平面ABCD得如图乙所示的四棱锥P-ABCD在如图乙所示中(1)求证:PD平面PAB;(2)求二面角A-PB-C的大小;(3)在棱PA上是否存在点M使得BM与平面PCB所成的角的正弦值为13?并说明理由【答案】(1)证明见解析;(2)56;(3)存在,理由见解析.【解析】(1)AB=1,AD=2,BD=5,AB2+AD2=BD2,ABAD,平面PAD平面ABCD,平面PAD平面ABCD=AD,AB平面PAD,又PD平面PAD,ABPD,又PDPA,PAAB=A,PD平面PAB(2)取AD的中点O,连结OP,OC,由平面PAD平面ABCD知PO平面ABC

15、D,由AC=CD知OCOA,以O为坐标原点,OC所在的直线为x轴,OA所在的直线为y轴建立空间直角坐标系如图所示,则易得C(2,0,0),P(0,0,1),D(0,-1,0),A(0,1,0),B(1,1,0),PB=(1,1,-1),PC=(2,0,-1),PD=(0,-1,-1)设平面PBC的法向量为m=(a,b,c),由mPB=0mPC=0,得a+b-c=02a-c=0,令a=1得b=1,c=2,m=(1,1,2),设二面角A-PB-C大小为,则cos=mDP|m|DP|=-1-262=-32,0,二面角A-PB-C的大小=56(3)假设点M存在,其坐标为(x,y,z),BM与平面PBC所成的角为,则存在,有AM=AP,即(x,y-1,z)=(0,-1,1),M(0,1-,),则BM=(-1,-,),从而化简得2+6-1=0,解得=10-30,1,=10-3在棱PA上满足题意的点M存在

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3