1、课时达标检测(二十五) 解三角形应用举例练基础小题强化运算能力 1.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A北偏东10 B北偏西10C南偏东80 D南偏西80解析:选D由条件及图可知,ACBA40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高是60 m,则河流的宽度BC等于()A240(1)m B180(1)mC120(1)m D30(1)m解析:选Ctan 15tan(6045)2,BC60tan
2、6060tan 15120(1)(m),故选C.3.如图,某工程中要将一长为100 m,倾斜角为75的斜坡改造成倾斜角为30的斜坡,并保持坡高不变,则坡底需加长_m.解析:设坡底需加长x m,由正弦定理得,解得x100.答案:1004如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB5,BC8,CD3,DA5,且B与D互补,则AC的长为_km.解析:8252285cos(D)3252235cos D,cos D.AC7(km)答案:75.如图,已知在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在海岛北偏东3
3、0,俯角为30的B处,到11时10分又测得该船在海岛北偏西60,俯角为60的C处轮船沿BC行驶一段时间后,到达海岛的正西方向的D处,此时轮船距海岛A有_千米解析:由已知可求得AB,AC,BC,所以sinACB,cosACB.在ACD中,DAC906030,ACD180ACB,sinADCsin(ACDDAC)sinACDcosDACsinDACcosACD,由正弦定理可求得AD.答案: 练常考题点检验高考能力一、选择题1已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得ABC120,则A,C两地间的距离为()A10 km B10 kmC10 km D10 km解析:选D
4、如图所示,由余弦定理可得:AC210040021020cos 120700,AC10(km)2如图,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A8 km/h B6 km/hC2 km/h D10 km/h解析:选B设AB与河岸线所成的角为,客船在静水中的速度为v km/h,由题意知,sin ,从而cos ,所以由余弦定理得2212221,解得v6 km/h.3一艘海轮从A处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30
5、分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是()A10 海里 B10 海里C20 海里 D20 海里解析:选A如图所示,易知,在ABC中,AB20海里,CAB30,ACB45,根据正弦定理得,解得BC10(海里)4一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45,沿点A向北偏东30前进100 m到达点B,在B点测得水柱顶端的仰角为30,则水柱的高度是()A50 m B100 m C120 m D150 m解析:选A设水柱高度是h m,
6、水柱底端为C,则在ABC中,BAC60,ACh,AB100,BCh,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m.5如图,某海上缉私小分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45方向有一艘船C,若船C位于A的北偏东30方向上,则缉私艇所在的B处与船C的距离是()A5()km B5()kmC10()km D10()km解析:选C由题意,知BAC603030,ABC304575,则ACB180753075,ACAB4020(k
7、m)由余弦定理,得BC2AC2AB22ACABcosBAC20220222020cos 30800400400(2),BC10(1)10()km.故选C.6.(2016武汉武昌区调研)如图,据气象部门预报,在距离某码头南偏东45方向600 km处的热带风暴中心正以20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为()A14 h B15 hC16 h D17 h解析:选B记现在热带风暴中心的位置为点A,t小时后热带风暴中心到达B点位置,在OAB中,OA600,AB20t,OAB45,根据余弦定理得OB26002400t226002
8、0t,令OB24502,即4t2120t1 5750,解得t,所以该码头将受到热带风暴影响的时间为15(h)二、填空题7.(2016河南调研)如图,在山底A点处测得山顶仰角CAB45,沿倾斜角为30的斜坡走1 000米至S点,又测得山顶仰角DSB75,则山高BC为_米解析:由题图知BAS453015,ABS45(90DSB)30,ASB135,在ABS中,由正弦定理可得,AB1 000,BC1 000(米)答案:1 0008.如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C
9、分别看两塔顶部的仰角互为余角则从塔BB1的底部看塔AA1顶部的仰角的正切值为_;塔BB1的高为_m.解析:设从塔BB1的底部看塔AA1顶部的仰角为,则AA160tan ,BB160tan 2.从两塔底部连线中点C分别看两塔顶部的仰角互为余角,A1ACCBB1,AA1BB1900,3 600tan tan 2900,tan ,tan 2,则BB160tan 245(m)答案:459江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距_m.解析:如图,OMAOtan 4530(m),ONAOtan 3
10、03010(m),在MON中,由余弦定理得,MN 10(m)答案:1010如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15,经过420 s后看山顶的俯角为45,则山顶的海拔高度为_m(取 1.4, 1.7)解析:如图,作CD垂直于AB的延长线于点D,由题意知A15,DBC45,ACB30.AB5042021 000(m)又在ABC中,BCsin 1510 500()CDAD,CDBCsinDBC10 500()10 500(1)7 350(m)故山顶的海拔高度h10 0007 3502 650(m)答案:
11、2 650三、解答题11.已知在岛A南偏西38 方向,距岛A 3海里的B处有一艘缉私艇岛A处的一艘走私船正以10海里/时的速度向岛北偏西22 方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?解:如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC0.5x,AC5海里,依题意,BAC1803822120,由余弦定理可得BC2AB2AC22ABACcos 120,所以BC249,BC0.5x7,解得x14.又由正弦定理得sinABC,所以ABC38,又BAD38,所以BCAD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5
12、小时截住该走私船12.已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM100米和BN200米,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30,该测量车向北偏西60方向行驶了100米后到达点Q,在点Q处测得发射塔顶B处的仰角为,且BQA,经测量tan 2,求两发射塔顶A,B之间的距离解:在RtAMP中,APM30,AM100,PM100.连接QM(图略),在PQM中,QPM60,又PQ100,PQM为等边三角形,QM100.在RtAMQ中,由AQ2AM2QM2,得AQ200.在RtBNQ中,tan 2,BN200,BQ100,cos .在BQA中,BA2BQ2AQ22BQAQcos 50 000,BA100.即两发射塔顶A,B之间的距离是100米