ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:245.50KB ,
资源ID:1310907      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1310907-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第2章极限(第12课时)小结与复习(2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

第2章极限(第12课时)小结与复习(2).doc

1、课 题:小结与复习(二)教学目的:1.进一步巩固求极限的基本方法,数学归纳法.2.利用函数极限存在,解题.3.利用函数的连续性,解一些题目 教学重点:求解数列或函数的极限.教学难点:极限的求解.数学归纳法的应用.授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:极限是描述数列和函数在无限过程中的变化趋势的重要概念.并且与我们下一章要学习的导数有密切的关系.学习极限概念要注意体会对象的变化规律,数列或函数有极限,意味着它们在变化中无限趋近于一个常数,所以我们要以运动的眼光来看待事物,要把握运动状态中的不变量.本节课,先本看一个用数学归纳法来证明的一个例子,虽然极限是本章的

2、主要内容,但数学归纳法这种方法也要掌握,特别是一些与n有关的题目,用数学归纳法证明会很方便,接着再来看一些关于极限的一些题目,进一步巩固一下求极限的一些方法. 教学过程:一、讲解范例:例1 已知数列(1)计算S1,S2,S3,S4.(2)猜想Sn的表达式,并证明.(3)Sn.解:(1)S1=.S2=S3=S4=.(2 )解:通项是以3n2,3n+1两数乘积为分母的,而我们看到,在表示上面四个结果的分数中,分子可用项数n表示,分母可用3n+1表示,于是可猜想.Sn=证明方法一:用数学归纳法证明如下:1 当n=1时,S1=等式成立.2 假设当n=k时等式成立.即 Sk=.当n=k+1时.当n=k+

3、1时,等式也成立.Sn= (nN*)证明方法二:Sn=(3)解: 例2已知下列极限,求a与b.(1)(2)(3)分析:此题属于已知x趋向于x0(或无穷大)时,函数的极限存在且等于某个常数,求函数关系式的类型.上边三个小题都不能简单地将x=x0直接代入函数的解析式中,因为(1)(2)中的x不趋于确定的常数,(3)虽然趋于1,但将x=1代入函数关系式中,分母为零.因此,解决此类问题的关键,是先要确定用哪种方法求极限,再将函数的解析式进行适当的变形,然后根据所给的条件进行分析,进而确定a,b的值.解:(1)1 如果1a0,不存在.2 如果 1a=0,=(a+b)=0 即a+b=0解:(2)要使极限存

4、在1a2=0.即1+2ab=0,a+10.解:(3)当x1时极限存在,则分子、分母必有公因式x1.ab2=1原式=说明:第一题是分子分母同除以x的较低的幂,第二题是分子有理化,和第一题的方法相结合,第三题是因式分解法和分子有理化法相结合.我们以前求极限的一种方法是分子、分母同除x的最高次幂,但像第一题,因为分子的次数低于分母的次数,如果分子除以x2,则分子极限为0,不符合,所以通分后,应除以分子分母中x的较低次幂.并且x的次数比分子x的最高次幂大的项的系数应该等于0,这样极限才存在.例3f(x)=求a,使f(x)存在.解:要使f(x)存在,则f(x)与f(x)要存在且相等.f(x)= (2x2

5、3)=2223=5.f(x)= (3x2+a)=322+a=12+a.5=12+a.a=7例4设函数f(x)=,在x=0处连续,求a,b的值.分析:要使f(x)在x=0处连续,就要使f(x)在x=0处的左、右极限存在,并且相等,等于f(x)在x=0处的值a.解:f(x)=(1)f(x)=(2x+1)=20+1=1说明:这类连续的题目,也关键是求在一点处的左、右极限存在并都等于在这点的函数值,与函数在这点的极限存在的方法是相同的 二、课堂练习:1 解:2.解:3. (m,n为自然数)解:当nm0时,即nm =0当nm=0时,即n=m =1当nm0时,即nm 不存在.当nm时,=0;当n=m时,=1;当nm时,不存在.4. (m,nN*,n正奇数)解:方法一:因为这里的m,n是确定数,不是无限数,所以在分母上,可以用函数极限的四则运算法则.方法二:设=y,则x= (yn1)当x0时,y1.5.数列an满足(2n1)an=2.求 (nan)解: (nan)= (2n1)an=(2n1)an=2.6.求下列极限:解:原式=.三、小结 :这节课还是主要学习求极限的方法,知道了极限求函数的解析式,或者知道了函数在点或区间上的连续性,求函数的解析式等 四、课后作业:五、板书设计(略)六、课后记:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3