收藏 分享(赏)

2021版高考数学一轮复习 核心素养测评五十九 10.doc

上传人:高**** 文档编号:1309436 上传时间:2024-06-06 格式:DOC 页数:3 大小:426.50KB
下载 相关 举报
2021版高考数学一轮复习 核心素养测评五十九 10.doc_第1页
第1页 / 共3页
2021版高考数学一轮复习 核心素养测评五十九 10.doc_第2页
第2页 / 共3页
2021版高考数学一轮复习 核心素养测评五十九 10.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、核心素养测评五十九圆锥曲线中的探究性问题1.(2019德州模拟)已知椭圆C:+=1(ab0)的左右焦点分别为F1,F2,离心率为,P是椭圆C上的一个动点,且PF1F2面积的最大值为.(1)求椭圆C的方程.(2)设直线PF2斜率为k(k0),且PF2与椭圆C的另一个交点为Q,是否存在点T(0,t),使得|TP|=|TQ|.若存在,求t的取值范围;若不存在,请说明理由.【解析】(1)当P为C的短轴顶点时,PF1F2的面积有最大值,所以 ,解得 ,故椭圆C的方程为:+=1.(2)设直线PQ的方程为y=k(x-1),将y=k(x-1)代入+=1,得x2-8k2x+4k2-12=0;设P,Q,线段PQ的

2、中点为N,x0=,y0=k=,即N,因为|TPTQ|,所以直线TN为线段PQ的垂直平分线,所以TNPQ,则kTNkPQ=-1,即k=-1,所以t=,当k0时,因为4k+4(当且仅当k=时取等号),所以t,当kb0)的右焦点与抛物线E:y2=2px(p0)的焦点F重合,且点F到E的准线的距离为2.(1)求椭圆C的方程.(2)若直线l与C交于M,N两点,与E交于A,B两点,且=-4(O为坐标原点),求MNF面积的最大值.【解析】(1)因为点F到E的准线的距离为2,所以p=2,F(1,0),由 解得 所以椭圆C的方程为+=1.(2)由(1)知抛物线E的方程为y2=4x. 要使直线l与抛物线E交于两点,则直线l的斜率不为0,可设l的方程为x=my+n,由 得y2-4my-4n=0 所以=(-4m)2+16n0,得m2+n0.设A,B 则 所以x1x2=n2,因为=-4,所以x1x2+y1y2=-4,所以n2-4n=-4,所以n=2, 所以直线l的方程为x=my+2,所以直线l过椭圆C的右顶点(2,0),不妨设M(2,0),N(x3,y3),-y3,且y30, 所以SMNF=|MF|y3|,当且仅当y3=时,(SMNF)max=.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3