1、专题43 圆锥曲线中角的常见问题的处理一、题型选讲题型一 、由角求圆锥曲线的离心率等基本量问题例1、【2020届北京市西城区师范大学附属实验中学高三摸底数学试题】已知双曲线的两条渐近线分别与抛物线交于第一、四象限的A,B两点,设抛物线焦点为F,若,则双曲线的离心率为( )ABCD例2、(2020届山东省济宁市高三上期末)已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()ABCD例3、(多选题)(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy中,抛物线的焦点为F,准线为l.设l与x轴的交点为K,P为C上异于O的任意一点,P在l上的
2、射影为E,的外角平分线交x轴于点Q,过Q作交的延长线于,作交线段于点,则( )ABCD题型二、角度问题的证明例4、【2018年高考全国卷理数】设椭圆的右焦点为,过的直线与交于两点,点的坐标为(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:例5、(八省联考数学)双曲线的左顶点为,右焦点为,动点在上当时,(1)求的离心率;(2)若在第一象限,证明:例6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线的焦点为.若点为抛物线上异于原点的任一点,过点作抛物线的切线交轴于点,证明:.,是抛物线上两点,线段的垂直平分线交轴于点 (不与轴平行),且.过轴上一点作直线轴,且被以为直径的圆
3、截得的弦长为定值,求面积的最大值.例7、(2020秋河南月考)已知椭圆E:+1(ab0),直线l:x+my10过E的右焦点F当m1时,椭圆的长轴长是下顶点到直线l的距离的2倍()求椭圆E的方程;()设直线l与椭圆E交于A,B两点,在x轴上是否存在定点P,使得当m变化时,总有OPAOPB(O为坐标原点)?若存在,求P点的坐标;若不存在,说明理由题型三、由角求参数问题例8、(2020届山东省烟台市高三上期末)已知椭圆的离心率为,是其右焦点,直线与椭圆交于,两点,.(1)求椭圆的标准方程;(2)设,若为锐角,求实数的取值范围.例9、(江苏省徐州市2021届高三第一学期期中考试)在平面直角坐标系xOy
4、中,椭圆C:(ab0)的右焦点为F(1,0),且过点(1,)(1)求椭圆C的方程;(2)设A是椭圆C上位于第一象限内的点,连接AF并延长交椭圆C于另一点B,点P(2,0),若PAB为锐角,求ABP的面积的取值范围二、达标训练1、【2016年新课标2理科11】已知F1,F2是双曲线E:x2a2-y2b2=1的左,右焦点,点M在E上,MF1与x轴垂直,sinMF2F1=13,则E的离心率为()A2B32C3D22、【2018年新课标2理科12】已知F1,F2是椭圆C:x2a2+y2b2=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,PF1F2为等腰三角形,F1F2P12
5、0,则C的离心率为()A23B12C13D143、(2020浙江温州中学高三3月月考)过点斜率为正的直线交椭圆于,两点.,是椭圆上相异的两点,满足,分别平分,.则外接圆半径的最小值为( )ABCD4、(2017常州期末)已知圆C:(xt)2y220(t0)与椭圆E:1(ab0)的一个公共点为B(0,2),F(c,0)为椭圆E的右焦点,直线BF与圆C相切于点B.(1) 求t的值以及椭圆E的方程;(2) 过点F任作与两坐标轴都不垂直的直线l与椭圆交于M,N两点,在x轴上是否存在一定点P,使PF恰为MPN的平分线?5、【北京师范大学第二附属中学2019-2020学年高三上学期期中】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.6、(2017苏州期末)已知椭圆C:1(ab0)的离心率为,且过点P(2,1)(1) 求椭圆C的方程;(2) 设点Q在椭圆C上,且PQ与x轴平行,过点P作两条直线分别交椭圆C于A(x1,y1),B(x2,y2)两点,若直线PQ平分APB,求证:直线AB的斜率是定值,并求出这个定值