专题五 立体几何中二面角的求法高考在考什么二面角的求法是立体几何中的重点,也是立体几何的难点,从近几年的高考试题来看,几乎每年都涉及到二面角的求法。二面角的常见求法:(1)定义法(2)垂线法(3)垂面法(4)延伸法(5)射影法一、定义法: 例1:如图1,设正方形ABCD-A1B1C1D!中,E为CC1中点,求截面A1BD和EBD所成二面角的度数。二、垂面法例2 如图3,设三棱锥V-ABC中,VA底面ABC,ABBC,DE垂直平分VC,且分别交AC、VC于D、E,又VA=AB,VB=BC,求二面角E-BD-C的度数。三、三垂线法:例3 如图6,设正方体ABCD-A1B1C1D1中,E、F分别是AB、C1D1的中点。(1)求证:A1、E、C、F四点共面;(2)求二面角A1-EC-D的大小。四、延伸法例4. 如图10,设正三棱柱ABC-ABC各棱长均为,D为CC1中点,求平面ABD与平面ABC所成二面角的度数。五、射影法例5如图12,设正方体ABCD-A1B1C1D1中,M为AA1上点,A1M:MA=3:1,求截面B1D1M与底面ABCD所成二面角。w.w.w.k.s.5.u.c.o.m