ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:70.56KB ,
资源ID:1306080      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1306080-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学专题复习 专题32 函数的存在与恒成立问题(学生版).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学专题复习 专题32 函数的存在与恒成立问题(学生版).docx

1、专题32 函数的存在与恒成立问题一、题型选讲题型一 、 函数的存在问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:,则只需要,则只需要,则只需要,则只需要例1、【2019年高考浙江】已知,函数,若存在,使得,则实数的最大值是_.例2、(2016泰州期末) 若命题“存在xR,ax24xa0”为假命题,则实数a的取值范围是_例3、(2016苏锡常镇调研) 已知函数f(x)x,若存在x,使得f(x)2,则实数a的取值范围是_题型二、 函数的恒成立问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以

2、采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。(2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。(可参见”恒成立问题最值分析法“中的相关题目)参变分离后会出现的情况及处理方法:(假设为自变量,其范围设为,为函数;为参数,为其表达式)(1)若的值域为,则只需要,则只需要,则只需要,则只需要例4、(2020届山东省泰安市高三上

3、期末)设函数在定义域(0,+)上是单调函数,若不等式对恒成立,则实数a的取值范围是_变式5、【2019年高考天津理数】已知,设函数若关于的不等式在上恒成立,则的取值范围为ABCD例6、(2020届山东省潍坊市高三上期末)已知函数当时,不等式恒成立,求实数的取值范围.题型三、函数的存在与恒成立的综合问题多变量恒成立与存在问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成

4、立问题了。(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。例7、(2019苏州期末)设函数f(x),若对任意x1(,0),总存在x2使得,则实数a的范围 例8、(2017苏锡常镇一调) 已知函数f(x)若存在x1,x2R,当0x14x26时,f(x1)f(x2),则x1f(x2)的取值范围是_二、达标训练1、(2017泰州期末) 若命题“存在xR,ax24xa0”为假命题,则实数a的取值范围是_2、(2017苏北四市摸底)已知函数f(x)ex1x2(e为自然对数的底数),g(x)x2axa3,若存在实数x1,x2,使得f(x1)g(x2)0,且|x1x2|1,则实数a的取值范围是_. 3、(2020届山东省济宁市高三上期末)已知函数,若有且只有两个整数使得,且,则的取值范围是( )ABCD4、【2020年高考天津】已知函数,为的导函数当时,求证:对任意的,且,有5、(2020浙江温州中学3月高考模拟)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3