1、第二章 一元一次方程一、背景与意义分析本课安排在第1章“有理数”之后,属于全日制义务教育数学课程标准(实验稿)中的“数与代数”领域。 方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。本课中引出了方程、一元一次方程等基本概念,并且对“根据实际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其
2、中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的“数学建模思想”是本课始终渗透的主要数学思想。在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。算术表示用算术方法进行计算的程序,列算式是依据问题中的
3、数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。二、学习与导学目标、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。利用率。、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。
4、、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到“从算式到方程是数学的进步”的含义。、观念确认与引导:通过经历“方程”这一数学概念的形成与应用过程,感受到“问题情境分析讨论建立模型解释应用转换拓展”的模式,从而更好地理解“方程”的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。三、障碍与生成关注通过“问题情境”,建立“数学模型”,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝“数学模型”方面理解。四、学程与导程活动(一)创设情景、引入新课同学们知道南通市的东城区吗?那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电
5、厂已在东城区的新胜村拔地而起(图片展示),让我们乘路公交车去感受一下吧!假设路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示: 地名时间小石桥8:00国胜东村8:09观音山8:17新胜村在观音山、国胜东村之间,到观音山的路程有千米,到国胜东村的路程有千米,请问小石桥到新胜村的路程有多远?先让学生读题,然后教师指出:这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,标出两端地点。小石桥观音山最后师生共同逐句分析,并提问:你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:、看表格有:从小石桥到国胜东村有_分钟;从小石桥到观音山有_分钟;从国
6、胜东村到观音山有_分钟。、你能画出汽车所经过四个地方的顺序图吗?不妨试一试;对照示意图,让学生指出有关路程的信息。教师最后整理成如下示意图: 小石桥国胜东村新胜村观音山(二)动手实践、发现新知你会解决这个实际问题吗?不妨试一试。(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。)如果学生中有人利用方程做出,教师分析左右两边的意义;如果没有,则作如下提示:如果设小石桥到新胜村的路程为千米,教师根据示意图,提出下列问题,让学生自主讨论口答:、小石桥到国胜东村有_千米,小石桥到观音山有_千米。、小石桥到国胜东村行车_分钟,
7、小石桥到观音山行车_分钟。、从小石桥到国胜东村的汽车速度为_千米分。让学生口答,请学生判断修正,并提出此题中有哪些相等关系?从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?由此启发得出方程: 指出:以后我们将学习如何从此方程中解出未知数X,从而得出小石桥到新胜村的路程。(三)类比分析、总结提高、方法解题时,列出的算式中只能用已知数表示;而方程是根据问题的相等关系列出的等式,其中既含有已知数,又含有未知数,即方程是含有未知数的等式。同学们也看到列方程比较方便,而算式较繁。、列方程的步骤让学生根据例子,总结出列方程的三步骤:()设字母表示未知数;()找出问题中的相等关系;()写出含
8、有未知数的等式方程。、对于上面问题,你还能列出其它方程吗?如能,你依据哪个相等关系?(学生讨论,代表发言)(四)例题分析、揭示课题同学们是否参加过学校的义务劳动呢?下面一起讨论义务为学校搬运砖块的问题。例、学校组织名少先队员为学校建花坛搬砖,六()班同学每人搬块,六()班同学每人搬块,总共搬了块,问六()班同学有多少人参加了搬砖?、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。先让学生试做,然后抓住时机,亮出如下表格,见机讲解。 六()班六()班总数参加人数 每人搬砖
9、数 共搬砖数 、通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。由上面题目分析也得出:这些都是只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程(板书课题:一元一次方程)、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。、例:根据下列问题,设未知数并列出方程:()一台计算机已使用小时,预计每月再使用小时,经过多少月这台计算机的使用时间达到规定的检修时间小时?()一根长的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?让位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照
10、一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。(五)总结巩固、初步应用 师生共同小结归纳上面的分析过程可以表示如下:设未知数找相等关系列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。、练习:() 环形跑道一周长,沿跑道跑多少周,可以跑?() 甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用元钱买了两种铅笔共枝,两种铅笔各买了多少枝?()一个梯形的下底比上底多,高,面积是 ,求上底。、 作业:课本页第、题。五、笔记与板书提纲课题例例示意图定义例列方程的分析过程归纳六、练习与拓展选题根据生活经历,自编一道列方程应用题。七、个别与重点辅导:学生姓名(略)八、反思与点评记录